

Title document:

Shadow Calculations NSF01

Company:

Van Oord Offshore Wind Projects BV

Client:

NSF

Project Name:

Pile design NSF01

Project Number:

144978

14.4978 Shadow calculation Pile design NSF01 144978-VOWP-NSF01-Shadow Calculation O-PILE

Revision

1

Substantiation of results

Comparison of Van Oord O-PILE method with Aqitec's methodology used in report 20230710_Pile_Report_v0.4.

Assumptions

Based on the soil input provided by Van Oord and the report of the concept design executed by Aqitec, shadow calculations were performed with the following assumptions:

- API method was used for determination of axial and lateral capacity of the anchor piles. Cyclic degradation is taken into account in the output of lateral capacity.
- Scour was considered as seabed-lowering, as also assumed by Aqitec.
- For lateral capacity, different load cases with increasing force were picked. The resulting
 displacement at the mudline was compared with the load-displacement curve provided by
 Agitec.
- For axial capacity, cumulative skin friction resulted in O-PILE was compared with the outside skin friction calculated by Aqitec.

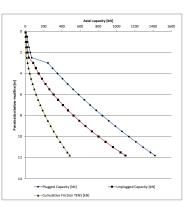
Conclusion

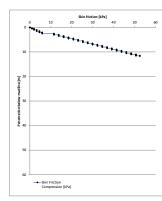
With the above assumptions we have come to the conclusion that, in terms of axial capacity, which is also the driving requirement for the design, the findings are in good accordance between Aqitec's and Van Oord results.

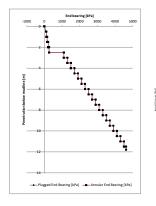
However discrepancy was found in the lateral capacity calculations. If a load of 1250 kN is applied at the Pad-eye level ~0.02m of deflection is expected by Van Oord compared to the ~0.03m found by Aqitec. It is to bear in mind that this difference in results will also cause a difference in the distribution of stresses within the anchor pile, therefore may also affect the design under a structural point of view.

	eneral	Analysis Information
Pile Penetration	m	11,8
Pile Length	m	16,3
General Scour	m	0
Local Scour	m	0
Overhurden Reduction Zone	m	0

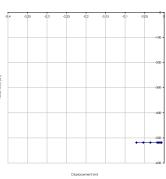
Other Axial Analysis Parameters		
TZ Method		API RP2GEO
Zpeak Over D		0,01
Optional End Bearing Limit		Unchecked
Optional Skin Friction Limit		Unchecked
Allow layer specific Tension T Modifier		Unchecked
Tmod		1
Zmod (TZ Curve)		1
Qmod		1
ZMod (QZ Curve)		1
Clay Friction Multiplier		1
Clay Alpha		0,7
Clay Exp 1		-0,5
Clay Exp 2		-0,25
ICP Base Condition		UNDRAINED
Sand Friction Multiplier		1
CPT Diameter	m	0,036
Pile Roughness		0,000025
API K Sand Compression		0,8
API K Sand Tension		0,8
Axial Chart Warning		FALSE


Smooth Plugged End Bearing		Unchecked
Plugged End Bearing Correction - Distance Above	m	0
Plugged End Bearing Correction - Distance Below	m	0
Plugged End Bearing Correction - Increment	m	1
Smooth Unplugged End Bearing		Unchecked
Unplugged End Bearing Correction - Distance Above	m	0
Unplugged End Bearing Correction - Distance Below	m	0
Unplugged End Bearing Correction - Increment	m	1


Lateral Analysis Parameters


Cyclic Or Static		CYCLIC
Stiff Clay API Factor (Cyclic Only)		0,7
Stiff Clay API Limit Strength (Cyclic Only)	kPa	96
x0 for Wesselink/Dunnavant	m	1
P Modifier		1
Y Modifier		1
Fragio Transition Depth	m	10
Rock mass shear strength as % of UCS	%	0,1
Dunnavant Cycles		100
ROCKREESE97 krm		0,0005
ROCKREESE97 Top Depth of Rock Layer	m	0
NOVELLO Cycles		100
Allow Y Shifts		Unchecked
Manually define Xr		Unchecked
Xr	m	
Modify Y for large diameter piles		
Allow layer specific Cyclic P Modifier		Unchecked
Clay Jeanjean Np0		
Clay Jeanjean Npd		
Clay Jeanjean factor on Su		
Clay Jeanjean allow manual Xi		
Clay Jeanjean Xi		
Clay Jeanjean Allow manual 20		
Clay Jeanjean 20		
Modified SANDAPI A_min		
Modified SANDAPI A_max		
Modified SANDAPI n_exponent		

SRD Parameters		
SRD Main Method		
K Sand Compression		0,7
Nu - Rock		3
Stevens Unplugged UB Factor - Sand		2
Stevens Unplugged LB Factor - Sand		1,5
Stevens Plugged Skin Factor		1,3
Stevens Nc - Clay UB		15
Stevens Upper Bound End Factor		1,5
ALM Upper Bound Factor		1,25
ALM Factor on Sand Friction		1
ALM Factor on Clay Friction		1,8
Include Effect of Installation Weight		Unchecked
Installation WEIGHT 1	[kN]	600
Installation WEIGHT 2	[kN]	800
Installation WEIGHT 3	[kN]	1000
Upper Bound Lambda Maximum - Clay - Colliat		0,5
Lower Bound Lambda Maximum - Clay - Colliat		0,2
Upper Bound Lambda Residual - Clay - Colliat		0,25
Lower Bound Lambda Residual - Clay - Colliat		0,05
Upper Bound Lambda Maximum - Sand, Rock - Colliat		1
Lower Bound Lambda Maximum - Sand, Rock - Colliat		1
Upper Bound Lambda Residual - Sand, Rock - Colliat		0,5
Lower Bound Lambda Residual - Sand, Rock - Colliat		0,3
Colliat Degradation Length	[m]	10
Optional End Bearing Limit		Unchecked
Optional Skin Friction Limit		Unchecked



Output Unit Options

kN Axial Capacity Output Unit
kPa End Bearing Output Unit

Checked	TZ, QZ Curves and Axial Capacity
Unchecked	Auto Generate Axial Load Cases
Checked	Axial Load Displacement Response
Unchecked	Axial Mobilized Capacity
Checked	PY Curves
Unchecked	Auto Generate Lateral Load Cases
Checked	Lateral Load Displacement Respons
Unchecked	Soil Resistance to Driving

Checked

Analysis Option	ns .
Unchecked	Conductor Mode
	Retain Old Results
100	Iteration Limit
Unchecked	Uncouple TZ/QZ and PY Generation from Load
	Displacement Response
0	Start MPC pile embedment depth [m]
-0,1	Negative displacement range limit (<0)*D [-]
0,001	Displacement Interval * D [] for Mobilized Capaci

05/07/2023 10:59:00 - Errors occurred during license check: Dinkey dongle error.
Dinkey Pro Net dongle cannot connect to server. Error code: 436. OPILE will start in DEMO mode.
05/07/2023 13:59:01 - This file was created using the full version of POULT and you are attempting to open it using the demo version. Check the Analysis

Naces for further into.

MORPORED 18 of the first war to consider the

demo mode then resulve it in demo mode and then reopen OPEE.

27/06/2023 16-53:27 - File saved

27/06/2023 18-53:27 - File saved

27/06/2023 18-53:27 - File saved

27/06/2023 18-53:27 - File saved

27/06/2023 18-53:28 - File saved

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:20

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:37

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:37

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:37

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:37

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:37

27/06/2023 18-53:29 - Locate Asia Response Peals Sarted 27/06/2023 18-53:39

27/06/2023 19-54:29 - Locate Asia Response Peals Sarted 27/06/2023 18-54:29

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:29

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:29

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-54:4 - Locate Asia Response Peals Sarted 27/06/2023 19-54:49

27/06/2023 19-

17/06/2023 19:10:04 - Analysis Finished 27/06/2023 19:10:04 27/06/2023 19:10:18 - File save 27/06/2023 19:10:23 - Analysis Started 27/06/2023 19:10:23 27/06/2023 19:10:26 - Erro: General Scour must be a number >= 0 27/06/2023 19:10:27 - Erro: Local Scour must be a number >= 0 27/06/2023 19:10:27 - Analysis Finished 27/06/2023 19:10:27

27,06/2013 19-10.27 - Analysis Finished 27/06/2023 19-10.27
27,06/2023 19-10.27 - Fits award
27,06/2023 19-10.27 - Fits award
27,06/2023 19-10.27 - Fits award
27,06/2023 19-10.27 - Analysis Statest 27/06/2023 19-10.53
27,06/2023 19-10.30 - Analysis Statest 27/06/2023 19-10.53
27,06/2023 19-10.00 - Data is missing or not numeric. check Analysis Notes box for details
27,06/2023 19-11.20 - Analysis Finished 27/06/2023 19-11.00
27,06/2023 19-12.30 - Fits award
27,06/2023 19-13.20 - Analysis Finished 27/06/2023 19-13.49
27,06/2023 19-13.51 - Analysis Finished 27/06/2023 19-13.51
27,06/2023 19-13.51 - Tels award
27,06/2023 19-15.51 - Fits keeper to transmitter or missing: Reta Comp [-]
27,06/2023 19-15.51 - Fits keeper to transmitter or missing set of complete or missing to the complete or missing the complete or mis

Checked	Include Border on Charts
Checked	Include Location Box on Charts
Checked	Include Project Number Box on Charts
Checked	Include Project Name Box on Charts
Checked	Include Client Name Box on Charts
Checked	Reshape Chart (to A4 or A5) for Copyin

	0,00018				
	0,00016				,
	0,00014				_
7	0,00012				
Lateral Shear Force (M)	0,0001				
rol Shear	0,00008				
9	0,00006				
	0,00004	-/-			
	0.00002				
-0.	05	0,05	0,1	0,15	0,5
	-0,00002				
		Lateral Displac	ement (m)		

SRD Custom input	Custom 1	Custom 2	Custom 3	Custom 4	Custom 5
SAND Skin Friction Factor	0,6	1,2	1,8		
CLAY Skin Friction Factor	0,6	1,2	1,8		
SAND End Bearing Factor	0,3	0,6	0,9		
CLAY End Bearing Factor	0,3	0,6	0,9		
Plugged / Unplugged	UNPLUGGED	UNPLUGGED	UNPLUGGED		