
 

 

 Automatic analysis of digital aerial surveys 
 
 A roadmap for the short, medium and long term 

 
  

 

  

   Author(s): Mardik Leopold, Freek Daniëls, Hans Verdaat, Afra Asjes, Paul Goethals en 
Lydia Meesters 

 

 

Wageningen University & 

Research report C082/21 

 

  

  

 



 

 

 
 
 
Automatic analysis of digital aerial surveys 
 
 
 
A roadmap for the short, medium and long term 

Author(s): Mardik Leopold, Freek Daniëls, Hans Verdaat, Afra Asjes, Paul Goethals en Lydia Meesters 
 
 
Wageningen Marine Research  

Wageningen Food & Biobased Research 

  

 

Wageningen Marine Research 
Den Helder, November 2021 

 

 

 CONFIDENTIAL   no 

 

Wageningen Marine Research report C082/21  

 
  



 

2 of 32 | Wageningen Marine Research report C082/21 

© Wageningen Marine Research 
 
Wageningen Marine Research, an institute 

within the legal entity Stichting Wageningen 

Research (a foundation under Dutch private 

law) represented by  

Drs.ir. M.T. van Manen, Director Operations 

 

 

KvK nr. 09098104, 

WMR BTW nr. NL 8113.83.696.B16. 

Code BIC/SWIFT address: RABONL2U 

IBAN code: NL 73 RABO 0373599285 

 

A_4_3_2 V31 (2021) 

Wageningen Marine Research accepts no liability for consequential damage, nor for 

damage resulting from applications of the results of work or other data obtained 

from Wageningen Marine Research. Client indemnifies Wageningen Marine Research 

from claims of third parties in connection with this application. 

All rights reserved. No part of this publication may be reproduced and / or published, 

photocopied or used in any other way without the written permission of the publisher 

or author. 

 

   

Keywords: automatic, image recognition, high definition images, deep learning, seabirds, marine 
mammals 
 
 
 
 
Client: Rijkswaterstaat Water, Verkeer en Leefomgeving 

Attn.: Dagmar van Nieuwpoort 
Postbus 2232 
3500 GE Utrecht 
 
 

  
  

 
 
This report can be downloaded for free from https://doi.org/10.18174/556349 
Wageningen Marine Research provides no printed copies of reports 
 
 
 

Wageningen Marine Research is ISO 9001:2015 certified. 
 
 
 
 
 
 
 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.18174%2F556349&data=04%7C01%7Csecretariaat.marine-research%40wur.nl%7C74d0ad156f1f4fb9affc08d99dd96fba%7C27d137e5761f4dc1af88d26430abb18f%7C0%7C0%7C637714379489324292%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=r%2FYDCXudpzkakywdjWkE6pWAhjQA45ToYEk7hB0oY%2FA%3D&reserved=0


 

Wageningen Marine Research report C082/21 | 3 of 32 

Contents 

Preface 4 

1 Introduction 5 

1.1 Objective 5 
1.2 Scope 5 
1.3 Benefits of an automated tool for digital surveys 5 

2 Marine animal surveying 6 

2.1 Current approach to at-sea seabird surveys 6 
2.2 Digital aerial surveys – domain knowledge 6 
2.3 International standards 7 

3 Automated analysis of digital aerial surveys 8 

3.1 Introduction 8 
3.2 Related work from scientific literature 8 
3.3 Objective of the project 9 

3.3.1 Goals for Phase 1: the short term 9 
3.3.2 Goals for Phase 2: the mid-term 10 
3.3.3 Goals for Phase 3: the long term 12 

3.4 Current and future projects 13 

4 Starting the development with phase 1 14 

4.1 Analysis of first images 14 
4.1.1 Survey area: Borssele wind farm 14 
4.1.2 Foreseeable problems with detections, identifications and statistical treatment 

of the data collected 14 
4.1.3 Description of the available data 17 

4.2 Roadmap to model and algorithm development and evaluation 21 
4.2.1 Infrastructure 22 
4.2.2 Agile project approach 22 
4.2.3 Deliverables 23 

5 Quality Assurance 24 

References 25 

Justification 28 

Annex 1 Adjacent PPS-project 29 

Annex 2 Involved parties 31 

 
  



 

4 of 32 | Wageningen Marine Research report C082/21 

Preface 

Wageningen University & Research has been commissioned by Rijkswaterstaat WVL (RWS) to 
investigate how aerial surveys of seabirds and marine mammals can be automated using artificial 
intelligence-based image analysis techniques such as deep learning. The wishes and requirements of 
RWS and the approach were discussed during two workshops with experts from diverse backgrounds. 
The purpose and use of an automatic tool have been discussed with experts who perform the surveys 
and analyses to map the populations of marine animals and report them to the Dutch authorities. The 
approach to develop an automatic tool has been discussed with data and AI scientists and application 
developers. In a third workshop, the same experts were asked to provide feedback on the draft version 
of this report and to discuss outstanding questions. This report is the result of these workshops and 
individual discussions with experts. 
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1 Introduction 

1.1 Objective 

The aim of this assignment is to develop an approach and process by which automatic image recognition 
software can be developed based on high-definition (hidef) images collected during aerial surveys at 
sea. This document will provide a perspective on the short, medium, and long term (1 year (concrete), 
3 years (global) and 5 years or longer (dot on the horizon)). The ultimate aim is to develop an open-
source platform for automatic image recognition and species identification for all types of footage 
collected by the most common types of aerial vehicles. 

1.2 Scope 

The scope of this project includes the following topics: 
• Organizing three workshops with (inter)national image recognition experts to discuss, based on 

the quality and annotations of the already collected images, the possible approach for the 
development of automatic image recognition software. 

• Writing a roadmap that describes the process to develop an automatic image recognition tool 
on the short, medium, and long term: 

o Description of the expected quality of image recognition and the various testable 
intermediate stages of the end product for process control. Short, medium, and long 
term for future technical development are distinguished.  

o Brief exploration of the Dutch and international standards used in the data structure, 
thereby ensuring that the output matches those international standards. 

o A focus on the species that are important to Wozep (seabirds and marine mammals) 
but takes into account possible broadening of the application (for instance other marine 
animals, schools of fish, plastic pollution, algal blooms) of the developed software 
during development. 

 
What is not part of this roadmap: 
• Detailed plan of deployment 
• How to collect representative datasets 
• Applying machine learning algorithms to explore the feasibility of an automatic tool 
• Operational phase of the developed system including aspects of ownership and governance 
• Extensive literature study 
• Digital survey design  

1.3 Benefits of an automated tool for digital surveys 

We realise that there will be pros and cons in switching from human visual observers to digital surveys 
and to automated evaluation of the survey results. These have been discussed by Žydelis et al. (2019) 
and in the workshops preceding the writing of this document. Some of the more obvious advantages of 
moving towards a fully automated approach are: 
• Observer independent 
• Quality assurance and transparency; images can be saved and viewed again later. 
• More detections / more identifications 
• Ultimately more cost efficient 
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2 Marine animal surveying 

2.1 Current approach to at-sea seabird surveys 

Several different platforms and methods have been and are still being used to survey seabirds at sea. 
Methods that yield seabird densities (n/km2) are: aerial, ship-based and land-based surveys (Tasker et 
al. 1984; Baptist & Wolf 1991; Komdeur et al. 1992; Durinck et al. 1994; Camphuysen et al. 2004). All 
three survey methods have in common that seabirds are counted within pre-determined survey areas. 
These might be counts within strips of a given length and width or counts of birds within a larger area 
of sea, visible from vantage points on land, such as secluded bays or estuaries. Land-based counts are, 
in principle, total counts within a rather large area, while both aerial and ship-based surveys take 
multiple, small samples. The basic technique in the latter two is a strip-transect method, in which all 
birds seen within a given surface area of sea are counted. It was soon realised, however, that birds at 
larger distances from the central (transect) line had a lower probability of detection than birds at closer 
range. To correct for birds being missed by the observer at larger perpendicular distances, sub-bands 
within the counting band, or strip were introduced (Tasker et al. 1984), allowing comparisons of 
apparent bird densities in sub-bands at various distances, so that densities in more distant sub-bands 
could be corrected, using Distance analysis techniques from line transect theory (Buckland et al. 1993; 
Skov et al. 1995; Poot et al. 2011). The end result of all survey techniques mentioned should be 
estimates of seabird densities (n/km2), and results from different surveys might be combined (e.g. Skov 
et al. 2007; Bradbury et al. 2014; Leopold et al. 2015). These survey techniques may be used for any 
species that is sufficiently abundant and detectable at the surface, be it seabirds or cetaceans (e.g. Fijn 
et al. 2020; Waggitt et al. 2020), pinnipeds (Leopold et al. 1997), or turtles and large fish (Ridoux et 
al. 2010), or, for that matter, non-biota (Scheidat & Feint-Herr 2012). 

2.2 Digital aerial surveys – domain knowledge 

Today, there is a clear movement towards digital surveys of seabirds and cetaceans at sea, using high-
definition cameras applied from (mostly at this time) fixed-wing aircrafts. Other carriers might be 
deployed as well, such as helicopters or unmanned vehicles (drones), e.g., from ships in remote waters 
(e.g., Herr et al. 2019). One clear advantage of digital surveys is increased safety: less personnel is 
needed, while the cameras are flown at much greater altitudes than human observers, who need to fly 
at rather risky low altitudes to be able to identify some of the more difficult targets (van Roomen et al. 
2013). Surveying at higher altitudes has the added advantage that offshore wind farms are no longer 
obstacles in the survey design. Other advantages of digital surveys are accountability: digital images 
can be retained for second opinion analyses, and that between-observer differences in detection and 
identification skills, that can be substantial (van der Meer & Camphuysen 1996), can be ruled out. 
Whether or not digital surveys can outcompete human observers in all situations, and can thus be more 
cost-effective, is not yet clear (Collier et al. 2021). However, there are also several probable 
disadvantages of digital surveying: flying at greater altitudes might decrease the number of weather 
windows for surveys; "context” (items attracting seabirds, such as platforms, fishing vessels, front lines 
etc) are mostly not captured on the images; initial costs are higher.  
 
Žydelis et al. (2019) describe the aerial, high-definition video survey method that is used in Borssele 
and that will also likely be used in the future Gemini project. They report a better performance of digital 
surveys over classic surveys with human observers, in terms of coverage, numbers of birds detected 
and identified, reduced disturbance of targets and reduced observer bias. However, specific identification 
of some species (grebes, auks) was problematic, and the collected images were evaluated by human 
observers (“trained ornithological specialists”), who might agree or disagree on the identification of 
certain targets. Target identification by human specialists is very time-consuming and, like classic 
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observer surveys, subjective to a certain extent. The next step would therefore be to build an automatic 
tool to detect and identify targets of interest on the digital images collected. 

2.3 International standards 

Ship-based and aerial surveys, carried out by human observers, have been used alongside each other 
in most North Sea countries for decades. The step towards using digital, aerial surveys, particularly in 
relation to offshore wind farm studies, has now firmly been made in the UK and in Germany. All UK 
Round 3 and 4 (see e.g., www.thecrownestate.co.uk/round-4/) offshore wind farm studies rely 
principally on aerial digital survey methods while Germany now requires that aerial digital survey 
methods are used for offshore wind farm studies. Likewise, digital survey methods are now used in 
offshore wind farm impact studies in the states of Maryland and Texas (USA). Digital methods are being 
evaluated in other regions. For instance, for the Baltic, the Baltic Marine Environment Protection 
Commission (2020) notes that: “Though currently too expensive for the purpose of large-scale 
monitoring, digital imaging from aircrafts may be an(other) option in future.”  
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3 Automated analysis of digital aerial 
surveys 

3.1 Introduction 

Since many years, digital aerial images are taken from specific water plots, e.g., in the North and Baltic 
Seas, for analysis of the presence of marine mammals and seabirds. Rijkswaterstaat is interested in 
estimating how many individuals of which species occur in which location. This analysis is currently 
performed in a non-automated way by trained humans. It is a highly specialised and time-consuming 
task. 
 
Until recently, the specialised task was too complex to consider automating it. However, in recent years, 
artificial intelligence (AI) has developed rapidly and has opened up possibilities to automate tasks that 
were previously performed manually. Therefore, Rijkswaterstaat has asked for this investigation into 
the possibility of performing an automated analysis of digital aerial surveys. 
 
Several studies reported in literature (see section 3.2) on automatic interpretation of wildlife 
photography have shown the potential of AI, and in particular of deep learning, for large scale, accurate 
analysis of animals (and plants) in digital images.  
 
The proposed approach to apply deep learning and build an automatic analysis tool for localisation and 
identification of seabirds and marine mammals in digital aerial surveys is outlined in section 3.3.  

3.2 Related work from scientific literature 

Automatic and semi-automatic methods for the surveying of animals can be partitioned into three 
classes of methods: (1) pixel-based methods (2) object-based methods and (conventional) machine 
learning, and (3) deep learning (Wang et al. 2019).  
 
Pixel-based methods are typically applied to VHR images captured from space where single animals may 
take up only a few pixels or even a single pixel. Because we will be considering the case where animals 
occupy more of the image, these methods fall beyond the scope of this overview. 
 
The next two classes of methods (conventional machine learning and deep learning) rely on imagery 
where animals occupy enough of the image that features such as shape and texture can be employed 
in making decisions. The difference between these methods lies in how these features are chosen for 
decision making support. Conventional machine learning methods often rely on humans to choose 
sensible features to operate on. While human expertise can be helpful in this process, such features are 
not necessarily optimal or robust. The power of deep learning-based approaches is that they can 
automatically learn to use features of interest within sets of images. These features can be more robust 
in decision making than features a human might choose. On ImageNet, a benchmark database with 
over 14 million annotated images, the best conventional machine learning approach, reported an error 
rate of around 25% prior to deep learning (Langlotz et al. 2019). After its introduction in 2012, deep 
learning models reported error rates of 15% in 2012 to less than 3% in 2017, outperforming humans 
whose error rate is reported at 5% (Langlotz et al. 2019). Systems based on deep learning have 
achieved state of the art performance in a large and growing number of problem domains, and so we 
choose to focus on these systems in this overview. 
 
Existing systems based on deep learning can be divided by the strategy they employ to localize animals 
within a larger image. Perhaps the most straightforward way of doing so is to partition the image into 
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smaller sub images on a regular grid of tiles. The system then tests for the presence of an animal in 
each of the sub images. This approach was taken by Gray et al. (2019) to predict the presence of sea 
turtles using a convolutional neural network (CNN) acting on each sub image. Similarly, Borowicz et al. 
(2019) detect cetaceans in satellite imagery by applying the CNNs ResNet and DenseNet to tiles. In 
detecting dugongs, Maire et al. (2015) take a different approach in choosing the sub images by centring 
them on super pixels, allowing them to extract animal positions by equating these with the super pixel 
centres. 
 
Alternatively, one can attempt to process the entire image using a deep network and try to predict the 
density of animals or probability of finding animals within subregions of the image. This approach was 
taken by Kellenberger et al. (2021) where they predict probability maps for seabirds within input images 
using a variant of the ResNet architecture. These maps are then processed to localize individual seabirds 
within the image. Padubidri et al. (2020) instead attempts to predict density maps of sea lion population 
by using the UNet architecture. Images are mapped to density maps, which can then be processed to 
obtain an estimated count of individuals within the input image. 
  
Another possible approach is to try to predict bounding boxes for all animals in the image directly. 
Guirado et al. (2019) take a hybrid approach to count whales where they first eliminate sub images that 
do not contain any whales. The remaining sub images are then processed using a network based on the 
Faster RCNN architecture, which produces bounding boxes for candidate whales within each sub image. 
Hayes et al. (2021) use a similar network based on a ResNet-50 backbone to localize seabirds in images 
of colonies. 
 
Concluding: we state that the use of deep learning methods has proven its worth in automated animal 
detection in digital images. We suggest using this approach as the starting point for the proposed 
automated image recognition approach. The goals and approach are elaborated upon in the next 
sections. 

3.3 Objective of the project 

The overall objective of the project is to provide a roadmap to develop a tool that automatically detects 
and identifies seabirds and marine mammals in digital aerial images. The tool needs to work with 
sufficient accuracy and have an option for humans to correct false identifications. It must learn from 
such corrections. The tool needs to be tested, verified, and made available through an open-source 
online platform for various animal detection tasks.  
 
This roadmap distinguishes three phases: the short term (1 year), the mid-term (3 years) and the longer 
term (5 years). In the short term, the proof of principle should be given, in the mid-term the 
development of a more complete software suite for data-driven biodiversity purposes should be put 
central and models for other animal classes might be developed, in the long term the software suite 
should become available for world-wide use. The goals of these three phases are elaborated upon below. 
In addition, chapter 4 will elaborate more on starting up this process.  

3.3.1 Goals for Phase 1: the short term  

In the short term (one year) the goal is to demonstrate the feasibility of automated detection, 
identification and counting of birds and marine mammals on digital video surveys using 
deep learning (AI). More specifically, the starting point of phase 1 is the existing set of Borssele 
wind farm images (frames from the video, each provided with GPS coordinates), that have been 
annotated by experts. This set of images and annotations are the ground truth for method 
development. In addition, it might be advisable to put human observers on board of service vessels in 
wind farms under high def surveillance, to get some ground truthing from independently assessed 
ratios of e.g. guillemot/razorbills on site. For now, the subgoals of phase 1 are to automatically 
measure the following parameters in this dataset: 
• In each image, the location of the seabirds and mammals that are present is determined 
• In each image, the identity of the present seabirds and mammals is determined 
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• From each present seabird and mammal, other characteristics annotated by experts are determined 
as much as possible. One can think of the activity of the animal (flying, swimming), of the gender 
or plumage of the species, flying directions etc. 

• For each video an overall count of detected and identified seabirds and mammals is determined 
(along with beforementioned characteristics if included). 

 
At the start of phase 1 the desired list of species and parameters to be detected and identified needs to 
be specified as well as targets for the performance/accuracy. Possibly the list of species from the 
annotations can be used, but this can also be further refined. As for the targets, an indication of human 
performance can be found in Žydelis et al. (2019) where a validation of similar annotation work took 
place and a detection rate between 91.51–99.71% and an identification rate of 93.20–96.76% was 
reported. 
 
Phase 1 will focus on model development and evaluation to demonstrate the feasibility and report on 
the intermediate and achieved performances. At the end of this phase a ‘go/no go’ decision will be 
made (based on the SMART criteria set to be described at the start of phase 1) and the developed 
models will be deployed to an environment where it can be run by trained operators (see Figure 1). 
Only in the next phases time will be spent on (pure) software development that will realize the end-
goal, an interactive platform for automated analysis of digital video surveys. 
 
In order to improve the image recognition model other annotated datasets can be added, if made 
available by project partners or other contributors. For instance, should the PPS-project Gemini be 
granted (see Annex 1), which will be announced beginning of November 2021, this will generate a 
dataset similar to that of the Borssele surveys.  A partner in this PPS also has datasets from similar 
surveys, but collected in other regions, with species relevant to the surveys preformed in the Southern 
North Sea.  
 

 
Figure 1. Slightly simplified workflow at the end of phase 1. Models are developed using the available 
videos and annotations. Developed models are then deployed on a separate pc on which new video 
material can be analysed. “Model” here is assumed to both identify and count seabirds and mammals 
on videos where in practice both an AI model and additional algorithms are needed for these tasks.  

3.3.2 Goals for Phase 2: the mid-term 

For the second phase of the project, to be concluded in approximately three years, the goal is to design 
and build a platform standardizing models and data, integrating data sets, evaluating existing models 
on new data and extending the applications to different domains and imaging technologies (UAV, 
satellite). 
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The existing models will be tested and evaluated with new survey data when available to assess their 
performance. It is not unimaginable that the models require retraining when presented with data that 
differ to some degree from the original training data. This could happen for instance when data is 
obtained from a different area where the background is much more complex than seen during the 
training phase. This could lead to an increase of false positive detections and some retraining will be 
required to familiarize the model with the new background. Typically, such retraining requires much less 
annotations. An evaluation should take place to see if retraining is needed and how many annotations 
it requires. In practice a domain expert could be asked to annotate several images after which the model 
is retrained. Retraining can be either in an online fashion, i.e. as annotations or corrections are provided, 
or offline. Model retraining strategies should be explored and their performances evaluated depending 
on the desired functionalities of the platform.  
 
Next to the model developments additional focus is on software development to build the platform that 
will facilitate the development of models and the automated analysis of video surveys. A major 
development will be the design of databases and ontologies (knowledge models describing the data, 
their properties and the relations between data) (Gruber 1993). Different data sets will have different 
annotators, and different annotators can use different names (or rather pieces of text) to identify the 
same species. To standardize this, ontologies should be used (such as WoRMS for marine mammals). 
Ontologies not only make sure that unique and universal identifiers for species (or objects in general) 
are used, but also capture the relation between objects. For example, all annotations for a particular 
family of seabirds can be found using the established relationship between family, genus and species in 
an ontology. Similarly, models will also be described using ontologies. This allows automated matching 
between type of models and annotations. Models can for example require each image to have one label 
(object present yes/no) or require each image to have a list of labelled bounding boxes, giving the 
position and identification of species. Such ontologies support model development in efficiency as 
relevant annotations can be automatically retrieved and utilise the full potential of available data by 
having it integrated and connected. Furthermore, databases will be designed to store data according to 
the FAIR principles (findable, accessible, interoperable, reusable). When we use a model on a data set, 
we want to log on what data the model was trained, what the performance obtained, who provided the 
annotations etc. 
 
A second development would be to build a user interface. The view of the project team during the 
workshops has been that in this phase the data and annotations are (still) entered to the database 
through software developers/maintainers and that the models are run also by trained operators rather 
than end users (domain experts). This because of the massive amount of video data, associated storage 
costs and the software developments needed to support such a functionality. The user interface would 
give relevant users the possibility to request analysis on data sets and retrieve the results as well as 
inspect any relevant information related to how the results were achieved. 
 
At the end of phase 2 the platform, depicted in Figure 2, should serve as an infrastructure where all 
data are standardized and stored. Model development and inference will be connected to the data 
(through an intermediate backend) to fetch relevant annotations, store models and their performances 
as well as completed analyses. This platform will likely run on a server with cloud storage for the data 
and high-performance clusters to train and run the models.  
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Figure 2. Schematic overview of the platform at the end of phase 2. Data are stored in a cloud 
environment and connected through a backend to training and inference procedures which run on a high 
performance cluster (HPC). A frontend is made for user interactions to review model performances, 
survey outcomes and to request analyses.  

3.3.3 Goals for Phase 3: the long term  

For the long term, the platform will be further automated and developed open source to make it 
available to (international) parties outside the project group. Developed models will be made available 
for users through the platform. Users will be given the possibility to upload data and annotations to 
the platform, either through the user interface or through software APIs (application programming 
interface). Additionally, it can be considered to incorporate functionalities to support users and domain 
experts to make annotations and corrections within the user interface. Users can search for suitable 
models and run these (without the interferences of model developers) on their data should they exist. 
The available annotations can be used to evaluate the performance and, if needed, for (re)training. 
Selected retraining strategies from phase 2 could be integrating allowing retraining to be done online 
in an automated fashion if suitable models exist. In case of an entirely new application, offline training 
with the help of a model developer might be needed. In both cases, uploaded annotations are only 
used for models of that particular user unless verified by a domain expert. This prevents the 
introduction of noise in the database. In Figure 3 the components of the platform at the end of phase 
3 are shown. 
 
At this point we assumed the deep learning models work on individual frames and an additional 
algorithm counts the detected and identified individuals over all frames in the videos (removing 
duplicate detections). The algorithm for counting is not necessarily a trained algorithm but rather a 
designed one which works under certain conditions such as minimal amount of overlap between 
images. When external users add their videos for analysis, such conditions might not hold. The user 
could then use the models for detection and identification on individual frames and export them for 
further analysis elsewhere or the algorithm could be adjusted and made available through the 
platform. The assumption is made with regards to the current state-of-the-art, but in five years’ time 
perhaps the best performing models are trained directly on videos in which case this is less relevant. 



 

Wageningen Marine Research report C082/21 | 13 of 32 

 
Figure 3. In phase 3 we allow external users to upload data and annotations and automate the inference 
of models which they can search for, select and start through the user interface (frontend). 

3.4 Current and future projects 

In the two years leading up to the writing of this document, project partners had been communicating 
with the commissioner about developing a publicly available aerial image recognition tool developed by 
a broad developing team of experts within The Netherlands. It gradually became clear that data of 
possibly two projects can be made available for use in the first phases of development. From February 
2021 to February 2022 (possibly to be extended to February 2023), digital video footage is collected in, 
and adjacent to Borssele offshore wind farm by a collaboration of Bureau Waardenburg and 
HiDef/BioConsult (total 24 to 48 surveys). Digital images will also be collected (2022-23) in and adjacent 
to Gemini offshore wind farm if the PPS-subsidy that has been requested is awarded (see annex 1). 
When using the data collected in both projects, it might be possible to develop software for automated 
detection, identification and counting of the seabirds and marine mammals captured on the footage. By 
using the data collected in both the Borssele and the Gemini project for training the software, these two 
projects benefit from each other.  
 
Once the software is up and running as required, there is the potential for other monitoring projects to 
benefit from this methodology, like:  

• MWTL seabird and cetacean surveys 
• seaduck and eider surveys in the Wadden Sea and North Sea coastal waters 
• specific surveys of certain “difficult species groups” such as grebes and divers in North Sea 

coastal waters 
• wind farm-related waterbird surveys in the North Sea and in IJsselmeer 
• future seabird surveys in the North Sea (both in Dutch domestic waters, and in other parts)  
• future SCANS surveys.  
• foreseeable developments in other regions might be surveys of certain charismatic species 

(cetaceans, sharks, flying fish, marine turtles, seabirds) in e.g., the Caribbean Sea. 
• other uses, e.g., identifying / quantifying floating litter, algal blooms, fishing vessels’ activities, 

etc. 
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4 Starting the development with phase 1 

4.1 Analysis of first images 

4.1.1 Survey area: Borssele wind farm 

Sample data have been made available and have been analysed to estimate the feasibility of 
automating detection, identification and counting of birds and mammals present and the methods 
needed to do so. The data consist of images, and annotations of species present on those images, 
from an area in and next to the Borssele wind farm (Figure 4). From this first data set, already some 
first insights into the difficulty for the objective at hand have been obtained. Example images are 
shown in Figures 5 and 6. In each a single individual (Great Blacked-backed Gull and Harbour 
Porpoise, respectively) can be seen within a yellow bounding box. From an altitude of around 550 
meters the pixel resolution is roughly 2.5 cm per pixel.  
 

 
Figure 4. Survey area with transect lines covering both Dutch and Belgian waters. The map also 
includes CPOD / SoundTrap positions that are part of the RWS PAM network (source: WaterProof 
2021). 

4.1.2 Foreseeable problems with detections, identifications and statistical treatment 
of the data collected 

Digital aerial surveys supposedly have (near) 100% registrations of the objects of interest. However, 
image quality may not always be optimal (Figures 5 & 6), e.g., sun glare in parts of the survey area and 
white caps on the water surface may hinder detection, over-exposure of images may affect white and 
dark parts of seabird plumage differently, while some species look very similar to each other from above. 
Other species might be too small for detection (depending on image resolution) or are too rare on the 
collected images for robust statistical analyses, while there are also the known problems of non-random 
occurrence and zero-inflation and effects of presumed impact factors that are unclear or dwarfed by 
other confounding factors on animal distribution (Leopold 2018; Zuur 2018; Zuur et al. 2014). In the 
early days of (visual) aerial surveys (Baptist & Wolf 1993) the rule of thumb was that 25 detections of 
a given species per survey were needed for analysis of densities or trends in density. How many hits 
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are necessary for full training of a deep learning system needs to be explored. Table 1, taken from Fijn 
et al. (2020), with several rarer species of seabirds added, gives an overview of these potential 
problems. 
 

 
Figure 5. Example image from Borssele data set, an immature Great Back-blacked Gull can be seen 
in the yellow bounding box. 
 

 
Figure 6. Example image from Borssele data set, a porpoise can be seen in the yellow bounding box. 
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Table 1. List of seabird species that are of potential interest in digital aerial surveys in Dutch marine waters. 
The “number of observations” gives an indication of relative densities in the target area: these were the total 
numbers of observations (of 1 or more birds) seen during 6 MWTL monitoring flights over the Dutch sector of 
the North Sea, in 2019-2020 (Fijn et al. 2020). Note that unidentified gulls, terns or auks, or rare species of 
gulls, are not included here. 

Euring 
code Species Number of Observations 

Too 
rare? 

Too 
small? Cryptic confusing species 

9 
Great Creasted 
Grebe 19 1   1 

Smaller grebes, particularly Red-
necked Grebe 

20 
Red-throated 
Diver 128     1 

Black-throated Diver, Great 
Northern and White-billed Divers 

30 
Black-throated 
Diver 0 1   1 

Red-throated Diver, Great 
Northern and White-billed Divers 

110 Slavonian grebe 2 1 1 1 Black-necked Grebe 

220 Northern Fulmar 303         

460 Manx Shearwater 1 1   1 
Sooty and Balearctic Shearwaters, 
Razorbill 

520 
European Storm 
Petrel 0 1 1 1 Leach's Storm Petrel 

550 
Leach's Storm 
Petrel 0 1 1 1 European Storm Petrel 

710 Northern Gannet 635         

720 Great Cormorant 193     1 European Shag 

2060 Common Eider 20 1       

2130 Common Scoter 111     1 Velvet Scoter (swimming) 

5660 Pomarine Skua 0 1   1 Arctic Skua 

5670 Arctic Skua 6 1   1 Pomarine, Long-tailed Skuas 

5690 Great skua 8 1       

5780 Little Gull 47 1   1 Kittiwake (juv) 

5820 Black-headed Gull 61 1      Little Gull 

5900 Common Gull 192     1 
Kittiwake, Herring Gull, Lesser 
Black-backed Gull (juv)  

5910 
Lesser Black-
backed Gull 1771     1 

Great Black-backed Gull, juvenile 
gulls in general 

5920 Herring Gull 526     1 
Common, Lesser & Great Black-
backed Gulls 

6000 
Great Black-
backed Gull 226     1 

Lesser Black-backed Gull, juvenile 
gulls in general 

6020 Kittiwake 1618     1 Common Gull, Little Gull (juv) 

6110 Sandwich Tern 987     1 other terns 

6150 Common Tern 599     1 Arctic Tern 

6160 Arctic Tern 11 1   1 Common Tern 

6340 
Common 
Guillemot 2683     1 Razorbill 

6360 Razorbill 957     1 Common Guillemot 

6470 Little Auk 0 1 1 1 Atlantic Puffin 

6540 Atlantic Puffin 64 1 1 1 Little Auk 

 
In digital aerial surveys that collect more than one image simultaneously (Figure 7), numbers of 
detections should be similar on all images, in other words, images collected closer to the track line of 
the plane should have the same animal density as images taken at larger perpendicular distances (after 
correction for the relative surface areas on the images). Whether or not this is the case needs to be 
tested. 
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Figure 7. (taken from Žydelis et al. 2019). Surveying with four digital cameras from a fixed-winged 
aircraft. Statistically, the same target densities should be found left and right of the plane and in the 
inner (129 m wide) and outer (143 m wide) strips. 
 
The effects of weather conditions, particularly glare and white caps can seriously hamper visual 
observations. How this affects digital surveys and the numbers of validated images for each observation 
condition, needs to be evaluated. 
Many seabird species might look very similar from above and this might hamper species identification. 
Moreover, some species have different plumages over time, that at least require a relatively large data 
set of validated images, for each plumage that occurs over time. The same applies to species that have 
different “colour morphs” (Northern Fulmar, skuas), or subspecies of different coloration (Lesser Black-
backed Gull: from Herring Gull-like grey to Great Black-backed Gull-like black). There may also be a 
lower size limit, given the quality of the images available, for species that can be detected or identified. 
Animals that spend time under water, like cetaceans or pinnipeds will have varying probabilities of 
detection with the depth at which they occur as the plane passes overhead, and the same applies to 
diving seabirds. 

4.1.3 Description of the available data 

Table 2 lists the species present in the Borssele sample dataset. In the second column the number of 
distinct individuals is indicated. Each individual is typically captured around four to seven times on 
succeeding frames. The total amount of annotations is given in the third and last column. The overlap 
on succeeding frames gives more opportunity for an algorithm to detect an individual. On the other 
hand, when counting it must be deduced if detected individuals were already seen. Having the 
individuals annotated multiple times rather than once is very valuable as it increases the number of 
examples, although not all annotations of the same individual will be as informative as those from 
different individuals. When birds are swimming for instance, multiple frames do not show much 
change in appearance. Therefore, this will only add a little bit of new information. For birds that are 
flying however, the change of wing position can cause significant variation in appearance and 
additional annotations of the same individual are highly informative.  
 
From Table 2 we can furthermore deduce that species identification is not always possible. Human 
experts are sometimes only able the infer the family or reduce the possible species to up to two 
species. It remains to be specified if these categories are relevant or if they should be refined. The 
other information we can clearly deduce is that the numbers per species are highly skewed. A few 
species dominate and for those a lot of annotations are available. Many species on the other hand 
have only a few annotations. Though this table lists only those species from the sample data and 
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(much) more data are expected, this skewedness is likely to remain to some extent. Collecting data 
from multiple seasons and combining these data with data from different areas will over time allow for 
more species to be automatically identified. This phenomenon is exactly what calls for a platform, 
standardizing and centralizing such datasets. Simultaneously ongoing developments in AI will lead to 
models requiring less examples.  
 
Table 2. Number of species and individuals present in the sample data received.  

 

Figures 8-11 show example annotations (cropped out from the larger images) of flying birds, swimming 
(floating) birds, songbirds, and cetaceans respectively. Each individual is shown on five consecutive 
frames. When estimating the feasibility for automating the detection and identification, these 
annotations are viewed using criteria such as the information present, intra-species variation, inter-
species similarities and background variation. The (amount of) information present (number of pixels, 
colour, in focus or not) determines the complexity of features that can be extracted or learned. On small 
blurry blobs no abstract robust features can be learned. With more intra-species variation, more data 
are generally needed to get a good representation of the variation. Inter-species similarity gives an 
indication on how difficult identification will be, high similarity simply means the visual differences 
between species are small and subtle. Finally, background variation is especially important in the 
detection part. If this variation is high, it is expected that there is either a difficulty in finding rare species 
or large numbers of false positives might occur.  
 

Species (activity) Number of individuals Number of annotations
Razorbill (sitting) 727 4788
Common guillemot (sitting) 279 1642
Common guillemot or razorbill (sitting) 225 1319
Black-legged kittiwake (sitting) 121 657
Lesser black-backed gull (sitting) 110 564
Northern gannet (sitting) 65 337
Harbour porpoise (moving) 58 302
Black-legged kittiwake (flying) 54 304
Lesser black-backed gull (flying) 52 272
Northern gannet (flying) 49 296
Unidentified songbird (flying) 30 143
Razorbill (flying) 26 130
Unidentified large gull (sitting) 26 143
Great black-backed gull (sitting) 19 102
Unidentified pinniped (grey or harbour seal) (stationary) 15 81
Herring gull (sitting) 14 66
Unidentified small gull (sitting) 11 57
Common guillemot or razorbill (flying) 11 61
Common guillemot (flying) 7 51
Common gull (flying) 6 31
Unidentified bird (sitting) 6 28
Unidentified gull (sitting) 6 34
Herring gull (flying) 6 29
Great black-backed gull (flying) 5 23
Common gull (sitting) 5 22
Great or lesser black-backed gull (flying) 3 17
Little gull (flying) 2 9
Unidentified pinniped (grey or harbour seal) (moving) 2 10
Black-headed gull (flying) 2 10
Great cormorant (flying) 2 8
Unidentified larus gull (sitting) 2 9
Unidentified large gull (flying) 2 11
Seal or small cetacean (moving) 2 12
Great or lesser black-backed gull (sitting) 1 5
Unidentified dove or pigeon (flying) 1 5
Harbour seal (stationary) 1 5
Unidentified bird (flying) 1 4
Unidentified diver (flying) 1 6
Common or herring gull (sitting) 1 6
Black-throated diver (sitting) 1 5
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Figure 8. Example annotations of seabirds flying. 
 

 
Figure 9. Example annotations of seabirds swimming. 

 
Figure 10. Example annotations of an unidentified songbird (flying). 
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Figure 11. Example annotations of cetaceans 
 
When we inspect the annotations, we see that the information present can be limited. Smaller species 
cover fewer pixels which leaves little to extract robust features from. It is worthwhile to discuss this in 
the future with the human experts on how they identify smaller species such as songbirds (and 
possibility if full resolution data were received or a compressed version). Larger species are more 
clearly visible, and shape and some colour can be seen. Although especially white birds are often 
overexposed losing most of the texture information, making inferring parameters such as plumage 
unlikely. Some inter-species similarities can be seen especially between sitting birds but from the 
annotations we can see that humans can identify them, nevertheless. Also, here it is good to discuss 
with experts what it is that distinguishes similarly looking species. With modern tools we can inspect 
what deep learning models pay attention to in images and compare this to what experts use to make 
distinctions and so can increase trust in the models. However, ground-truthing for abundant, yet 
similar species such as auks (“razormots”) may prove useful. With regards to the intra-species 
variation, we see for example significant differences due to motion of flying birds. It is very valuable 
that the annotations cover multiple frames of individuals so that the variation is captured as much as 
is possible. Finally, what seems to make automating the detection using state of the art technology 
highly feasible is the fact that the background variation is low. Background here means everything not 
considered an object of interest. Because of this we expect that the detection of rare species (without 
identification) should even be possible. The exact feasibility and number of annotations cannot be 
calculated beforehand. However, an estimate for automating identification of larger species when 
flying would probably be around 200 annotations of individuals (captures in multiple frames), for 
smaller species or species sitting more annotations might be needed. 
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Based on paragraphs 1.2 and 1.3, a list of issues one might run into when developing the deep 
learning model can be made: 

• Depending on the survey method, when more than one image is collected simultaneously, 
correct for relative surface of the image opposite to the capture angle from the plain 

• Weather conditions, like glare of the sun or white caps on the sea surface, species might look 
identical from above 

• Some species show plumage changes during for instance their lifetime 
• Some species have colour morphs 
• Marine mammals might be less visible when deeper under water due to water turbulency. 
• For rare species there might not be enough images available for training 

 
4.1.3.1 Feedback on image capture 
From the images seen so far, we observe two areas that could be considered for improvements. The 
resolution (pixel per cm) is quite low, especially when dealing with smaller birds. This leaves little 
information for models to extract robust abstract features from. No discussion has taken place with 
the company responsible for the image acquisition on the used hardware nor has an inventory taken 
place on available and suitable cameras. As such no comment can be given at this stage on the 
possibility or expected cost for upgrading cameras to improve the resolution. Secondly, there is a lot 
of overexposure such that texture information of birds is lost. If plumage is needed to identify species 
or gender this could be a limitation. The use of polarizing filters could be considered to remove or 
reduce the effects of glare and overexposure if not already in place. The need for improvements is 
related to the demand for performance. From the given images human experts can identify most birds 
to a certain degree. We expect with enough annotations to reach similar or better performances with 
current state-of-the-art deep learning models. Improvements in image acquisition could lower the 
number of needed annotations or improve performance by providing more discriminatory information.  

4.2 Roadmap to model and algorithm development and 
evaluation 

It is advised to use the Borssele dataset as the starting point for building a platform for automated 
digital video or image surveys. In this first phase, of approximately one year, this dataset can be used 
to demonstrate the performance of state-of-the-art deep learning models and algorithms for: 

1. Detecting objects of interest in videos surveys: perhaps the most crucial part of this 
development. If one can detect all birds and mammals in images (frames of videos), experts 
are no longer needed to scan through lengthy videos in search of objects of interest but rather 
the machine can select the images and regions within those images where animals are 
located. This promises to be a major time and therefore cost saver. 

2. Identify the detected species. For species with sufficient numbers of annotations it will be 
possible to identify them automatically. These species therefore no longer need to be 
analysed by experts at all. 

3. Count the detected and identified species. Species are detected, and if possible, identified, on 
extracted frames from videos. Because it is video footage, individuals are captured on 
multiple frames. This requires an additional algorithm to prevent the same individuals from 
being counted more than once throughout the videos. 

 
The task of localising and identifying multiple objects in images is commonly known as an object 
detection problem. The goal of which is to predict objects by bounding boxes and provide for each 
bounding box a label or class. In our case these classes would encode the different species. The best 
performing deep learning models for object detection at this moment include Faster-RCNN (Ren et al. 
2017) and YoLo (Redmon et al. 2016). These could be considered as a starting point to try and solve 
goal one and two in the beforementioned list. To track objects over frames and obtain a count (goal 
three) a combination of Kalman filters (Kalman 1960) and the Hungarian algorithm (Kuhn 1955) could 
for example be considered.  
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Another possible approach would be to use methods like DeepSort which integrates both object 
detection and tracking (Wojke et al. 2017). DeepSort also uses Kalman filters and the Hungarian 
algorithm, but additionally trains a deep learning model on the appearances of objects between 
frames. Using this model, it is attempted to reduce the number of misassignments of objects between 
frames. Such errors typically occur when paths of objects cross or occlude each other. Methods 
like DeepSort place a much heavier burden on the annotation process as they require that objects are 
annotated and linked throughout the video. However as mentioned earlier in this chapter for the 
Borselle dataset this is the case. 
 
The performance of these three goals needs to be evaluated in two parts. Firstly, a subset of the 
videos needs to be kept aside during algorithm development and training as a test set. On this test 
set, the animals that were annotated by (human) experts are compared with where animals were 
predicted (detected (and possibly identified)) by the algorithm. This comparison could be quantified 
using two metrices, ‘precision’ and ‘recall’. Recall gives the percentage predicted animals that were 
annotated. Precision gives the percentage of predictions that are matching with the annotations. In an 
extreme example, one can obtain a high recall by predicting animals everywhere, this will lead to a 
very low precision though (often wrong). As an opposite, one can obtain a high precision by predicting 
animals nowhere (never wrong), but that will result in a very low, or zero, recall. Typically, a balance 
between both is sought, though perhaps in this project a higher recall is desired, and a slightly lower 
precision might be tolerated as long as human experts are still in the loop for making corrections. This 
would mean the system gives more false positives (animals detected which are not there) but fewer 
false negatives (animals not detected). Such a performance is expected to still lead to significant cost 
reductions as domain experts are only needed to review detections rather than analyse entire video 
surveys.  
 
This first part of the evaluation leads to a performance relative to the annotations. However, it is not 
unlikely that errors exist in the annotations. Species can be missed or misidentified. Therefore, the 
second part of the evaluation has to be that independent experts review those detections and 
identifications where the predictions and the annotations do not agree. Without knowing what was 
predicted and what was annotated the experts will decide who was right. This final evaluation should 
lead to a ‘go’/’no go’ to complete phase 1 and start phase 2. At the start of phase 1 the criteria for a 
‘go’ should be formulated by the involved parties using the SMART principles. If a ‘go’ is given, phase 
1 will be completed by deploying the solution (i.e., developed algorithms) to an environment where 
new surveys can be analysed upon request. This environment will be controlled by the developers 
while no interface for domain experts is yet developed.  

4.2.1 Infrastructure 

In phase 1 all developments can in principle be done locally if the size of the data permits this. The 
environment in which the models will be deployed can be a standalone pc. If it so happens to be that 
the data of the Borssele dataset is of such size that local storage is inefficient or awkward in use, it is 
advised that all operations start in a cloud environment. This will require budget for the renting of 
space and computation time. Cloud storage is available in different modes: from cold, cool to warm 
and hot. Thought should be given on which mode is needed for what type of data. For example, cold 
and cool modes are cheaper, but these data are not readily available and need to be requested (e.g., 
for analysis) in advance. Given the expected size of the video survey data (>20 TB per flight) and 
because most of it will be needed sparsely (only in training) one of these modes would seem to be the 
best fit.  

4.2.2 Agile project approach 

We recommend approaching this project using an iterative or agile approach where frequent 
communication takes place between the end user(s) of the software and the software development 
team. The advantage of such an approach is that not all wishes and requirements need to be fully 
mapped out beforehand (as is the case in the traditional ‘waterfall method’) but can be gathered 
incrementally. Incremental prototypes make it easier for users to understand the capabilities and 
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limitations of the automated tool and to adjust, refine and prioritise the tool’s requirements during the 
project. The iterative process is depicted in Figure 12. 
 

   
Figure 12. Schematic depiction of an agile development process, each cycle is called a 'sprint' and each 
sprint results in an implemented 'minimum viable product'. 
 
The initial planning of the project should take place together with all stakeholders. A product vision 
document is created, in which a detailed description of the software tool is given and in which user 
stories are defined. User stories are descriptions in the form “as <user> I want <functionality> because 
of <reason>”.  The user stories are prioritised and one or a few are selected as basis for the first 
minimum viable product. This list of selected user stories is referred to as the ‘back log’. In the sprint, 
the user stories are elaborated, the corresponding algorithms are designed and implemented, the 
created software is tested, and the resulting minimum viable product is evaluated with the stakeholders. 
Before the second cycle starts, new user stories are added to the back log according to the stakeholders’ 
priorities and the process is repeated. 
 
In order to achieve a good agile software development process, it is important to identify and involve 
relevant stakeholders on a regular basis. Apart from the project commissioners, these are: 
 
• Data providers, who provide the image sets, meta data and manual annotations. 
• Users, who will be using the output generated by the automated tool, e.g., to generate reports for 

policy makers. 
• Users, who will use the tool to automatically detect and identify the animals in the tool.  
• Policy makers, who will need to use the reports to determine and adjust the relevant policies. 
• An application provider, who will eventually deploy and maintain the automated tool. 
 
Not all stakeholders will have the same role, but it is important to keep track of every stakeholder’s 
interests. 

4.2.3 Deliverables 

The expected deliverables of a project following Phase 1 would be:  
• Describe a set of SMART criteria as a basis for the ‘go/no-go’ decision to move from phase 1 to 

phase 2 by the parties involved in the development of the model and algorithm. These criteria 
reflect the wish list of species that the system needs to be able to detect and identify and the 
minimum performance level considered acceptable (for example in terms of precision and recall 
as mentioned in 4.2).  

• A report describing the architecture of the software tool with a summary of the results of the 
automated annotation on the Borssele data set  

• A hands-on session for the users of the software to learn to work with the software tool   
• Demo / video of the created software tool 
• Roadmap for the next phase  
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5 Quality Assurance 

Wageningen Marine Research utilises an ISO 9001:2015 certified quality management system. This 
certificate is valid until 15 December 2021. The organisation has been certified since 27 February 
2001. The certification was issued by DNV GL.  
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Annex 1 Adjacent PPS-project 

1.1 Contribution 

Part of the contribution to the development described in this roadmap is a requested subsidy PPS-
project, a collaboration between public and private parties, that aims to run parallel to and provide 
input to the larger Image Recognition project described in this roadmap. If granted, the “Gemini / PPS 
project” will contribute to the development by collecting additional field data, attributed images and 
(software & AI) development. It is stressed that this PPS is not part of this roadmap but will apply the 
steps described in this document in the development.  

1.2 Deliverables 

Table 1. Project deliverables of PPS. Abbreviations: WMR = Wageningen Marine Research, BuWa = 
Bureau Waardenburg, AFR = Agro Food Robotics 

WP Deliverable Title Who Type Delivery date 

 1  1.1 Annotated images 
Gemini wind farm 

 Bioconsult-HiDef  Data set  31-06-2023 

 1  1.2 Validation of annotated 
images Gemini & 
Borssele wind farms 

 WMR/BuWa  Data set  30-09-2023 

 1  1.3 Article annotation 
validation 

 WMR/AFR/BioConsult/ 
 BuWa 

 Scientific paper  31-12-2024 

 2  2.1 Deep learning model: 
iterative updates (three 
per year) 

 AFR/WMR  Model  31-12-2025 
 (Final report) 

 2  2.2 Article on deep learning 
models 

 AFR/WMR  Scientific paper 
 

 31-12-2025 

 2  2.3 Method description 
collected field data.  

 All project partners  Scientific paper 
 

 31-12-2025 
  

WP Deliverable Title Who Type Delivery date 
 2  2.4 (Software) platform 

automated digital video 
surveys 

 AFR  Software  31-12-2025 

 3  3.1 Infographics on social 
media 

 WMR  Outreach  31-12-2025 

1.3 Project team PPS 

• Gemini is enabling this project within their wind farm and making the budget for the data 
collection and analysis of auks and guillemots habitat loss available for the broader analysis 
for all species and for use for the general purpose of developing image recognition software 
(AI). 

• WMR is project leader, responsible for project management and guarantees cooperation 
within the project, the connection of this project with the development of the National 
Infrastructure Image Recognition Aerial Surveys. 

• WUR AgroFoodRobotics is a group within Wageningen Research with more than 10 years of 
experience in research and development of AI and image recognition software, mainly in the 
Agriculture and Greenhouse Horticulture sectors, but recently also more in the marine 
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environment in collaboration with WMR. They will develop the AI together with development 
partners. 

• Observation International has already gained a lot of experience with automatic image 
recognition. Dylan Verheul is co-founder of the Waarneming.nl/Observation.org platform and 
director of the Observation International foundation. He will contribute best practices/lessons 
learned from his role as client for building AI/Deep Learning model for image recognition 
species and as person ultimately responsible for the implementation of image recognition as 
part of their platform (incl. mobile apps; ObsIdentify). 

• BioConsult is a German-based company of which the English company HiDef Aerial Surveying 
Ltd is a part. Since 2014, BioConsult SH has been conducting research on seabirds and 
marine mammals in the North Sea and the Baltic Sea using the high-resolution digital camera 
system developed by HiDef. The HiDef method has set a new standard internationally for 
marine ecological research and provides high quality data for impact assessment studies and 
conservation projects. Within this project, BioConsult will perform the digital aerial surveys 
above the Gemini wind farm and annotate the images. In addition, they will contribute their 
extensive experience and expertise with image recognition. 

 
An advisory committee will be set up that will ideally consist of, but not be limited to, Gemini wind 
farm, Rijkswaterstaat (WVL and CIV Datalab), Royal Belgian Institute of Natural Sciences (RBINS) and 
Bureau Waardenburg. All these parties have experience with or are involved in digital aerial survey 
projects and their analysis.  
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Annex 2 Involved parties    

This roadmap (and the associated PPS) has been developed by a wide range of contributors, 
representing an equally wide range of (international) organisations. To continue the work of 
developing an AI for aerial survey image recognition a commitment to participate in a future project 
team or take seat in a guidance committee was given by most of the involved organisations.  
 
Parties involved in the workshops and drafting of this roadmap: 

• WUR AgroFoodRobotics is a part of Wageningen Research with over ten years' experience 
in research and development in AI and image recognition software, originally active in agri- 
and horticulture, since recent years collaborating with WMR on topics related to automated 
biodiversity monitoring. Responsible for the AI insights in this project. 

• WUR Wageningen Marine Research (WMR) has a broad range of seabird and marine 
mammal expertise. WMR is project leader of the PPS project, responsible for project 
management and for organizing the cooperation between PPS project partners. WMR has been 
conducting (international) seabird and marine mammal aerial surveys for many years, 
including surveys for the SCANS projects. 

• Observation International, partner in the NatureAI consortium (that also includes Naturalis 
Biodiversity Centre) that has developed a species identification model for identification of all 
species on images that is made available on their platform Observation.org and the mobile 
app ObsIdentify. This party has offered to serve as an advisor for AI and platform 
developments with the potential to also participate in the development team. 

• Bureau Waardenburg (BuWa) is an ecological consultancy that has been conducting 
seabird and marine mammal aerial surveys for Rijkswaterstaat for many years, including 
surveys for the MWTL program. 

• Rijkswaterstaat CIV Datalab is a team part of Rijkswaterstaat working on data storage, 
software and AI development. 
 

Contributors for the proposed development could include: 
• Rijkswaterstaat (RWS); CIV Datalab collects data at sea in a wide range of projects 

potentially other survey data could constitute a useful contribution to the proposed AI 
development  

• BioConsult is a commercial company in Germany, in which the UK-based company HiDef 
Aerial Surveying Ltd is embedded. BioConsult SH has conducted seabirds and cetacean 
studies since 2014 in North and Baltic Seas, using the digital high-definition camera systems 
and software developed by HiDef. The HiDef-method has set an international standard for 
marine research and provides high quality data for impact and conservation studies. 
BioConsult will conduct the digital aerial surveys for both Borssele and Gemini within this 
project and will annotate the collected footage. BioConsult and HiDef can share their extensive 
experience in image recognition with the software developers. 
 

It might be good to also set up a Guidance committee to receive direct feedback from parties 
involved in such a development. Such a committee could include: 

• Gemini offshore wind farm or any other windfarm operators for insight into what the wind 
farm owners consider relevant 

• Rijkswaterstaat (WVL) for insight into what the policy makers need for information 
• Royal Belgian Institute for Natural Sciences (RBINS) or other international institutes for 

insight into the developments abroad 
• Bureau Waardenburg bringing in their experience with bird counts both from ships as from 

planes  
These bodies are all highly experienced in offshore wind farm impact studies and/or digital aerial 
surveying and data analysis. 
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