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Abstract14

Coastal seas are experiencing increasing human pressure, related15

to among other things fishing, oil and gas exploration and the con-16

struction of wind farms. Concerns about the impact of these activities17

on marine top-predators, such as pinnipeds, cetaceans, and seabirds,18

has stimulated the development of individual-based population mod-19

els that should be able to predict changes in the population dynamics20

of these charismatic species in response to the pressures. In this paper21

we review existing models, evaluate their predictive capacity and pro-22

pose future research lines that could help improving the applicability23

of these kind of models.24
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1 Introduction25

Marine mammals and seabirds are often considered ‘charismatic megafauna’26

(Reynolds et al., 2009), and as top-predators they play an important role in27

marine ecosystems. Changes in the marine system, including lower trophic-28

level changes in primary productivity may ultimately propagate through the29

system and influence these top predators. Therefore, marine mammals and30

birds have also often been used as ecosystem sentinels (Moore, 2008). These31

species groups can highlight hotspots in productivity, reflect changes in food32

webs, and also accumulate contamination which can be used as proxy for33

environmental pollution. As top-predators they also may impose top-down34

pressure on marine ecosystems. Because both marine mammals and seabirds35

were severely hunted in the last two centuries, overall numbers were low.36

Therefore, during and just after the era of intensive hunting, their top-down37

effect on marine systems was relatively small, particularly when compared to38

overall fishing pressure (Engelhard et al., 2014). However, increases in marine39

mammals and seabirds may ultimately place them back at the prominent40

position in the marine food web (Baum and Worm, 2009; Aarts et al., 2019).41

1.1 Anthropogenic changes in the North Sea and its42

relevance for marine mammals and sea birds43

The North Sea has seen rapid changes in human activities in the last decades.44

While some human activities like fishing effort has decreased, other activities45

like shipping, beach nourishment, and the construction of renewable energy46

sources have increased (Halpern et al., 2015). Particularly the construction47
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of offshore windfarms will likely expand in the coming years. There is how-48

ever a debate whether the reduced climate change effects of such renewable49

energy sources, outweigh their environmental impacts (Gibson et al., 2017;50

Wright et al., 2020). For example, the construction and operation of off-51

shore windfarms produce sound that may deter marine organisms, and the52

structures and rotating blades cause mortality from collisions (Drewitt and53

Langston, 2006) and may deter (or attract) marine mammals, seabirds and54

bats (Masden et al., 2010). The structures can also change wave-action and55

stratification in the wake of these turbines (Carpenter et al., 2016), which56

can influence lower trophic levels and these effects may propagate through57

the system and ultimately influence the survival and food availability of the58

marine top-predators.59

1.2 What drives marine mammal and seabird distri-60

bution and population size?61

The distribution and abundance of all organisms are strongly influenced by62

environmental features which can roughly be classified into three groups: re-63

sources, conditions and risks (Begon et al., 1996). Resources are substances64

or objects in the environment required by an organism for normal growth,65

survival and reproduction. A key aspect of resources is that their availability66

can be changed by an organism, for example, by consumption (e.g. prey)67

or occupation (e.g. breeding and foraging sites). This can lead to density68

dependent effects, such as limits to population growth and size (i.e. carrying69

capacity) or avoidance of areas with high density of conspecifics, despite high70
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prey availability. Conditions are environmental variables surrounding the or-71

ganism and influencing the functioning of living organisms (e.g. temperature72

or salinity). In marine mammals and seabirds, oceanographic characteristics73

and seafloor properties (e.g. depth or sediment type) are important condi-74

tions that strongly influence their ability to catch prey (Aarts et al., 2008;75

Embling et al., 2013; Scott et al., 2013). Finally, risks are environmental vari-76

ables that directly lower survival or reproduction and differ from conditions77

in that they always have a negative relationship with fitness. Historically,78

the main risks were actual or perceived predation pressures (i.e. landscape79

of fears). However, in the last centuries human activities have often been the80

main threat. These threats could be direct, like hunting or fishery bycatch,81

or indirect, like noise emitting anthropogenic activities such as shipping, pile-82

driving or underwater explosions that disturb marine mammals. The effect of83

resources, conditions and risks on species distribution and abundance often84

interact. Only under a narrow set of environmental properties can a species85

persist. Therefore, most species occupy areas with a narrow range of envi-86

ronmental properties, which leads to association with specific habitats. This87

association with specific habitats is driven by two main processes: Population88

dynamics (i.e. survival, growth and reproduction) and behavioral selection.89

For sessile organisms, demographic processes are often the main driver. For90

those organisms it is important to have all the right environmental prop-91

erties in one location for the organism to experience positive fitness. For92

example, most bivalve species have a wide-ranging larval stage, but once set-93

tled, they must cope with the local environmental circumstances. In contrast,94

the distribution of marine mammals and seabirds, is also strongly driven by95
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behavioral selection. For those mobile species, the necessary resources rarely96

occur at the same time at the same place, and they have to move around to97

access those disparate resources (e.g. feeding grounds and resting grounds).98

In other words, no single point within the North Sea leads to long-term posi-99

tive fitness, but they can accumulate positive fitness by moving around. This100

also highlights their need to roam freely, a requirement which can become101

more challenging in environments with human structures, like (rotating) off-102

shore wind parks. So human activities may influence the overall productivity103

of the system, but also influence the ability to find and reach those places.104

What makes this study system particularly challenging is that not only the105

organisms are highly mobile, and changes in the system may impact their106

mobility, but also the system itself is highly dynamic. Changes that occur in107

remote regions, may ultimately propagate to other regions.108

2 How to asses and predict the effect of envi-109

ronmental change on distribution and pop-110

ulation size?111

To assess the cumulative human impacts on marine top-predators, one ap-112

proach that has been extensively used is to calculate the overlap between ma-113

rine top-predator distributions and species-specific weighted maps of multiple114

anthropogenic stressors (Maxwell et al., 2013). Although this can be a valu-115

able tool to highlight regions where conflicts between human activities and116

marine top-predators are more likely to arise, the approach has some severe117



2 HOWTOASSES AND PREDICT THE EFFECTOF ENVIRONMENTAL CHANGEONDISTRIBUTION AND POPULATION SIZE?7

limitations. The distribution of top-predators might already be influenced118

by human activities, the effects of anthropogenic stressors on the different119

species are often poorly known, and perhaps most importantly, the approach120

ignores indirect ecosystem effects. For example, marine top-predators rely on121

prey species that are often highly mobile as well. Therefore, changes in lower-122

level productivity well outside the predators foraging range might be carried123

over and influence top-predator population dynamics. Therefore, to pre-124

dict population level responses to human activities, taking into account such125

multi-trophic spatial and temporal dynamics, a more sophisticated model126

framework is needed that. For this, three model types have been identified127

(Figure 1):128

1. Demographic models 2. Species distribution models 3. Individual-129

based models

Figure 1: Characteristic of various model types. Taken from Johnston et al.
(2019).

130
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2.1 Demographic models131

Demographic models (e.g. matrix population models) can be used to esti-132

mate how changes in the vital rates (e.g. survival, age at maturity, fecundity)133

influence population dynamics. These models can be extended by including134

individual variation (e.g. using integral projection models) or evolutionary135

processes. Most demographic models are empirical and fitted to population136

count or mark-recapture data, and hence are limited in their ability to pre-137

dict the effect of environmental change on population dynamics. Although138

they can be extended by inclusion of mechanistic components (de Vries and139

Caswell, 2019), they are generally not spatially explicit, and cannot easily140

include complex behavioral interactions between individuals and their envi-141

ronment.142

2.2 Species distribution models143

Species distribution models capture the statistical relationship between the144

distribution of a species and environmental variables. Although these types145

of models are most often used for spatial estimation and inferences (i.e. un-146

raveling which environmental variables influence species distribution), they147

can be used to predict in space and in time. However, this is often problem-148

atic for two main reasons. Firstly, species distribution and environmental149

variables may covary in novel ways. This is particularly likely to happen150

when the model is used to predict for regions outside the environmental151

space for which the original models were fitted. Secondly, the species dis-152

tribution models assume a (pseudo-) equilibrium distribution, which means153
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that all suitable habitats are colonized, and that the species-environment re-154

lationship do not change. In real systems, this is almost never the case. Most155

often there is a delay in the occupation of suitable habitats. For example,156

grey whales used to live in the North Sea, but were extirpated in the Atlantic157

Ocean centuries ago. They are still present in the Pacific, and some individ-158

ual’s sightings have been made in the Atlantic in the last decade. It is not159

unlikely that the eastern Atlantic contains suitable habitats and someday a160

small number of Pacific grey whales may settle. These delays in occupation161

occur at all spatial and temporal scales, from global and centennial scales162

(in the case of grey whales but also grey seals in the Wadden Sea), but also163

at kilometer and hourly time scales (e.g. the inability of foragers to find and164

reach the temporal appearance of foraging hotspots). Such delays hamper165

the fitting of distribution models, but also their ability to predict.166

2.3 Individual-based models167

Individual (or agent-) based models are centered around the individual and168

how it interacts with its environment (which is also allowed to be highly169

dynamic). IBMs are bottom-up models, often centered around the mecha-170

nisms that drive behavior and physiology, and the population distribution171

and abundance is an emerging property. Most IBMs are designed to mimic172

species as precisely as possible (i.e. digital twins), and in theory any relevant173

characteristics of a species and how it interacts with its environment can be174

included. There are a number of important advantages and reasons for using175

IBMs:176
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1. Movement is a stochastic process. When movement is a passive (e.g.177

dispersal by currents), it may be possible to describe movement by a de-178

terministic mathematical formulation (e.g. a diffusion kernel). However, for179

individuals that move actively, like all higher trophic organisms do, movement180

becomes highly stochastic and cannot by captured by simple deterministic181

functions.182

2. Experience and learning is a stochastic process and will influence future183

decisions.184

3. Resource distribution is stochastic. Even if we have a perfect model185

of food distribution, the distribution of individual fish remains a stochastic186

process. The result of this is that two individuals arriving at a single site,187

may have different prey encounters and this will likely influence their future188

decisions to return or move elsewhere.189

4. Individuals can have positive or negative effects on each other. E.g.190

seals tend to breed where other seals breed. The accidental grouping of191

individuals may fuel the development of persistent breeding colonies. Nega-192

tive effects are often indirectly, as individuals influence resource density for193

others.194

3 Individual-based models: General struc-195

ture196

Several individual-based models have been developed for marine mammals197

and seabirds, like Northern Gannets (Warwick-Evans et al., 2018). Although198
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such models differ in complexity, the models underlying these applications199

have some key elements in common (Fig. 2). The three elements working on200

the individual animal are physiology, behavior and evolution. We consider201

evolution to beyond the scope of this study since most marine mammal and202

seabird species are long-lived (>10 years) species.

Figure 2: Conceptual standardized mechanistic approach for predicting an-
imal population dynamics in response to spatially explicit abiotic drivers
(blue) and multiple stressors (red). Individual mechanisms (black) interact
to drive shifts in population abundance and distribution (green), and biotic
drivers (orange) cause feedbacks between population dynamics and individ-
ual mechanisms. Taken from Johnston et al. (2019).

203

3.1 Physiology and behavior204

1. Physiology can be described by Dynamic Energy Budget model (Kooij-205

man, 2010; Brown et al., 2004; van der Meer, 2006) describing allocation of206

energy to maintenance, growth and reproduction.207

2. Behavioral can be classified into distinct behavioral states and the208

state-switching probabilities of the decision tree (Patterson et al., 2008).209

These behavioral states include for example foraging, resting, digesting,210

breeding, etc. Once these behavioral states and properties (e.g. turning211

angle and movement speed) have been defined, they can be used to simu-212
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late the movement and behavior of individual animals (Michelot et al., 2017)213

There is a tight link between physiology and behavior. For example, each214

behavioral state has different energetic costs (and gains). Conversely, the en-215

ergetic state of the individual (e.g. size of energy reserves) strongly influences216

the behaviour, e.g. whether to forage or carry out other activities.217

3.2 Abiotic drivers, stressors and biotic drivers218

These individuals, defined by their physiology and behavior are strongly in-219

fluenced by their environment (the blue, red and orange box in Figure 2).220

We prefer to make the classification into the resources, conditions and risks221

defined previously. For marine mammals and seabirds one important com-222

ponent is their prey. The spatial distribution of prey is a main driver of223

predator distribution, and the prey encounter rate and energetic content de-224

termine the energy gain of the predator. When marine mammals occur in225

high numbers, they may locally deplete resources, and therefore information226

on absolute prey availability is needed to account for such depletion. Also,227

data and models (e.g. DEB models) on prey growth (i.e. prey productivity)228

are needed. For example, if there are strong density dependent effects in229

prey communities, predators may alleviate such density-dependent competi-230

tion and increase fish growth, and as a result those predators may have little231

impact on total prey biomass In addition to having data on spatio-temporal232

distribution of abiotic drivers (conditions), stressors (risk) and biotic drivers233

(resources), the relationship with the species (i.e. the arrows need to be234

defined). This is one of the most challenging part and requires information235
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on species habitat association. As noted previously, the distribution of a236

species is not only shaped by resources, but also by conditions and risk. For237

example, depth for marine mammals influences the costs to reach benthic238

prey, water clarity influences the probability to detect prey and internal wa-239

ter structure (e.g. stratification layer depth) can influence the accessibility240

of seabirds to reach those prey. Also, risk factors, like natural predators and241

anthropogenic activities may strongly influence their distribution. In sum-242

mary, although there are obvious benefits for using IBMs, there is also a main243

disadvantage. All mechanisms included in the model need to be parameter-244

ized, and often there is insufficient data. This brings forward the dilemma245

of how much detail to include and how to deal with missing parameters.246

4 Applications of IBMs for seabirds and ma-247

rine mammals248

A search within the Web of Science Core Selection was performed using the249

keywords ‘individual-based model’ AND (‘marine mammal’ OR ‘seabird’).250

This resulted in 11 hits, from which 4 papers present a relevant model. Ref-251

erence and citations list of these publications were further explored. Addi-252

tional ad-hoc searches were performed with Google and in personal libraries.253

Finally, eighteen papers were selected, eleven of which focus on a marine254

mammal species (Table 1), the others on birds. Most papers were published255

in the last five years.256
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4.1 Model descriptions257

The purpose of most models is to predict how human impact on food avail-258

ability affects either the status (e.g. mass or condition) or fitness (reproduc-259

tive capacity or survival) of individuals, or the size and dynamics of pop-260

ulations (Table 2). Food availability may be affected through the removal261

of part of the foraging habitat, for example as a result of the presence of262

wind farms that are avoided by the animals, or by lowering density of prey263

species. Lowering food availability will decrease food intake rates, affect the264

energy budgets of individuals, and consequently their state and fitness. It is265

therefore not surprising that the core of most models is the mass and energy266

balance of individual animals.267

4.2 Energetics268

The level of detail by which the energy budget is described varies enormously269

among the models (Table 3). Some models contain very detailed descriptions270

of energy intake, allocation and expenditures, including costs of diving, flying,271

thermoregulation, etc. (Beltran et al., 2017; Brinkman et al., 2003; van de272

Wolfshaar et al., 2018), using up to 55 parameters, including ones like the273

deposition efficiency of proteins or the energy density of hair (Beltran et al.,274

2017). Others describe the energy content of each individual with only a275

single state variable, which increases as a result of feeding and decreases at276

a constant rate (Nabe-Nielsen et al., 2014; van Kooten et al., 2019). Most277

studies presented models with an intermediate level of complexity, but only278

three studies used a model that was (partially) based on the well-established279
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Dynamic Energy Budget (DEB) theory (Kooijman, 2010).280

4.3 Food281

Only two studies used true data of food abundance (Brinkman et al., 2003;282

van de Wolfshaar et al., 2018). Both studies concerned a diving duck (ei-283

der and black scoter) feeding on bivalves, for which spatio-temporal data284

are easier to obtain than for other prey types such as fish or zooplankton.285

Two studies used an environmental proxy for food, that is an upwelling in-286

dex (Pirotta et al., 2018) or water depth (Topping and Petersen, 2011). Most287

studies generated a food landscape, usually on the basis of the observed spa-288

tial distribution of the predator itself (Table 3). This generated food land-289

scape could also consist of a landscape of potential intake rates, such that290

the predation process is not included explicitly in the model.291

Prey abundance or potential food intake is either static (Massardier-292

Galata et al., 2017; van Kooten et al., 2019), gradually depleted (Brinkman293

et al., 2003; van de Wolfshaar et al., 2018) or depleted and slowly replen-294

ished (Testa et al., 2012; Nabe-Nielsen et al., 2014).295

4.4 Movement296

In slightly more than half of the models individuals move around in a 1D297

(3 models) or 2D (6 models) food landscape (Table 3). The two diving298

duck models do not consider movement explicitly, but calculate the potential299

numbers of overwintering ducks that can feed upon the available food during300

the cold season, in which the food is gradually depleted (Brinkman et al.,301
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2003; van de Wolfshaar et al., 2018). Movement in the 2D models usually302

follows a random walk or correlated random walk (which means that suc-303

ceeding steps have a high probability of movement into the same direction),304

with (Massardier-Galata et al., 2017; Nabe-Nielsen et al., 2014; Zhang et al.,305

2017) or without (van Kooten et al., 2019) the possibility, for example when306

energy balance was not maintained, to move to better feeding areas, which307

are memorized from previous experiences (Massardier-Galata et al., 2017;308

Nabe-Nielsen et al., 2014; Zhang et al., 2017).309

4.5 Status, fitness, and populations310

Two studies restricted the output to the status of the individuals, in terms311

of the daily energetic balance of the seals (Steingass and Horning, 2017) or312

a description of the foraging movements (Zhang et al., 2017). Five stud-313

ies described the consequences at the population level. Testa et al. (2012)314

simulated the predator-prey population dynamics of killer whales and one315

to three seal populations for a period up to 1000 years. Nabe-Nielsen et al.316

(2014) simulated the dynamics of a porpoise population in relation to regen-317

erating food patches for a period of 40 years. As mentioned earlier, the two318

diving duck models calculate the potential numbers of overwintering ducks319

that can feed upon the available food during the cold season, in which the320

food is gradually depleted (Brinkman et al., 2003; van de Wolfshaar et al.,321

2018). They thus do not describe population dynamics but potential popu-322

lation size. Topping and Petersen (2011) also predicted potential population323

size only, in their case population size of the red-throated diver for various324
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wind farm scenarios. Output of all other studies contained one or more fit-325

ness measures, such as survival and/or reproduction rate. Massardier-Galata326

et al. (2017), for example, assumed a mass-dependent survival probability for327

adult Antarctic fur seals and their pups. Similarly, New et al. (2014) and328

Pirotta et al. (2018) related pup survival probability to wean mass by some329

statistical relationship. Beltran et al. (2017) assume that adult Weddell seals330

or their pups die when the fat content drops below 5%. Similar thresholds331

were applied in the other studies (Villegas-Amtmann et al., 2015; Langton332

et al., 2014; Warwick-Evans et al., 2018).333

4.6 Data used334

All studies used literature data to obtain the values for all energy budget335

parameters.336

4.7 Predictions337

None of the models has been used to predict population consequences for a338

very specific management scenario or scenarios. Almost all studies end with339

a somewhat vague conclusion about applicability and predictive potential,340

for example saying that ‘our model can be used for assessing disturbance341

costs or other effects associated with climate change and/or anthropogenic342

activities’ (Villegas-Amtmann et al., 2015). Only one paper is clearer, where343

Testa et al. (2012) write that ‘We do not imply specific predictive ability to344

the model described here. Its value is primarily heuristic, and the lessons are345

general’.346
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5 Discussion and perspective for modelling347

the impact of North Sea wind farms on348

mammals and birds349

Although considerable effort is put into developing the IBM part of the model,350

the functionality of each model strongly depends on an accurate description351

of the environment. For example, for the DEPONS model, the distribution of352

porpoises was used as proxy for prey fields. This philosophy is underpinned353

by the Ideal Free distribution, which assumes that animals will aggregate in354

various patches in proportion to the amount of resources available in each355

patch. Although appealing, it is the interaction between all relevant re-356

sources, risks or conditions that shape species distributions. Having a single357

proxy for all those factors is likely insufficient. Therefore, it is important358

to unravel which environmental variables influence species distribution. This359

could partly be achieved by species distribution models. Subsequently, mech-360

anistic formulations of those dependencies can subsequently be included into361

the IBMs. For this to work, two key data ingredients are needed.362

1. Detailed individual-level data on behavior (like movement) and phys-363

iology. Such data could best be collected using animal-borne data loggers364

(e.g. GPS-trackers, accelerometers and temperature sensors)365

2. Accurate representation of their environment, and in particular the366

distribution and dynamics of their prey. Currently most fish surveys are367

carried out once (or twice) each year and provide a relative measure of abun-368

dance (since catchability is often unknown). Estimates of absolute abundance369
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are needed to calculate possible density dependent effects on the population370

dynamics of the apex predators. Multiple surveys each year are needed to371

quantify changes in distribution, abundance and energy content.372

When the hurdle of an appropriate description of the (food and risk)373

environment is taken, models should be more widely applied, e.g. for different374

species, in different areas, and with different human impacts, to test their375

predictive ability and to see whether they can provide more than general376

lessons only.377

Table 1: Individual-based models of seabird and marine mammal popula-
tions. Model approach is either forward simulation using fixed behavioural
rules (S) or dynamic programming (DP) where behaviour is optimized in
terms of fitness.
Number Species Approach Reference

1 Atlantic fur seal S Massardier-Galata et al. (2017)
2 Elephant seal S New et al. (2014)
3 Southern elephant seal S Goedegebuure et al. (2018)
4 Harbour seal S Steingass and Horning (2017)
5 Gray seal S Silva et al. (2020)
6 Weddell seal S Beltran et al. (2017)
7 Killer whale S Testa et al. (2012)
8 Harbour porpoise S Nabe-Nielsen et al. (2014)
9 Long-finned pilot whale S Hin et al. (2019)

10 Gray whale S Villegas-Amtmann et al. (2015)
11 Blue whale DP Pirotta et al. (2018)
12 Common scoter S van de Wolfshaar et al. (2018)
13 Eider S Brinkman et al. (2003)
14 Common guillemot S Langton et al. (2014)
15 Red-throated diver S Topping and Petersen (2011)
16 Black petrel S Zhang et al. (2017)
17 Various seabirds S van Kooten et al. (2019)
18 Gannet S Warwick-Evans et al. (2018)
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Table 2: Purpose of the various models
Number Purpose is to assess the impact of:

1 Climate-related change in food density and distribution on reproductive success
2 Environment-induced change in foraging behaviour on pup survival
3 Changes in resource availability
4 Hypoxia increases on energy balance
5 Food limitation, endocrine disrupting chemicals and infectious diseases
6 Change in food density on growth, reproduction and survival
7 Prey species composition on population size
8 Noise and by-catch on population size
9 Yearly recurrent period of no resource feeding

10 Disturbance on reproduction
11 Anthropogenic perturbations on reproductive success
12 Food availability and disturbance on carrying capacity
13 Food availability on carrying capacity
14 Change in food density and distribution on reproductive success
15 Removal of feeding area by wind farms on population size
16 Food distribution on movement patterns
17 Removal of feeding area by wind farms on mortality rate
18 Removal of feeding area by wind farms on mortality rate
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