Windmolens op zee en habitatverlies: Populatie effecten voor vijf soorten zeevogels

F. H. Soudijn, D. Benden, C. Chun, M. Leopold, I. Tulp, T. van Kooten

Offshore wind farms (OWF) vs. seabirds

Research project "Kader Ecologie en Cumulatie"

- Populations of porpoises, birds, bats
- Cumulative effect of OWF deployment planned up to 2030 outside of 12 miles zone
- Effects of OWF on seabirds
 - Collisions
 - Habitat loss

Habitat loss: avoidance of "Lucht ter Duin" by common guillemot

Lucht ter duin, Skov et al. 2015

What are the population level effects of habitat loss due to offshore wind deployment?

Northern gannet (Jan van Gent)

Sandwich tern (Grote stern)

Common guillemot (Zeekoet)

Red throated diver (Roodkeelduiker)

Razorbill (Alk)

Dierschke, Furness & Garthe, 2016

Red throated diver

Migrating/ flying around (April-May)

Solitary breeding near small lake (June-Sept) – Russia/Scandinavia

Wintering (Oct-March) – along European coast

Northern Gannet

Breeding (April- Aug.) – Rocky Islands

Sandwich tern

Breeding in dense colonies (April - July) – Sandbanks

Migrating/ flying around (August – October) – ??

Wintering (November – March) – Africa/Southern Europe

Razorbill & common guillemot

Dense (mixed) colonies, rocky shores

Breeding (~Apr. -Aug.) Drifting // wintering (~Oct. - Mar.)

Breeding (~May. – June)

Drifting // wintering (~July. – Apr.)

Different life-history per species; presence in study area

Northern gannet April-Aug (5 mo); Sept-March (7 mo)

Common guillemot July-April (10 mo)

WAGENINGEN UNIVERSITY & RESEARCH

Red throated diver Oct-March (6 mo)

Sandwich tern April-August (5 mo)

Razorbill Oct-March (6 mo)

Step 1: How do the birds use the study area?

- Spatial Statistical model
- Bird count data (MWTL & ESAS)
- Abiotic variables
 - Sediment type
 - Water depth
 - Distance to coast
 - Distance to colony
 - Seafloor slope

Data input – abiotic variables

100years

Guillemot density based on habitat suitability // OWF overlap=> baseline for the rest of the calculations

Overlap between population distribution and OWFs

Step 2: What are the costs of habitat loss for the birds?

Individual based model

Step 2: Moving around the map

Predict where the birds move to:

- Bird density map (habitat suitability model) is used as food quality map
- Higher probability of going to or staying in grid cell with high food density

Step 2: Moving around the map

- Individual based model
- Bird density map (habitat suitability model) is used as food quality map
- Higher probability of going to or staying in grid cell with high food density

Step 2: Food intake -> Survival

- Higher food intake in grid cell with high food density
- Energy budget, estimates survival.
- Bird dies if energetic demands cannot be met

Step 2: Change in experienced food quality -> Survival

- OWFs reduce available habitat
- Estimate of effect on survival
- Bird dies if energetic demands cannot be met

Step 2: Change in experienced food quality -> Survival

- OWFs reduce available habitat
- Estimate of effect on survival
- Bird dies if energetic demands cannot be met

Step 2: No density dependence

 No density dependence; effect of change in habitat quality

Step 2: No density dependence

 No density dependence; effect of change in habitat quality

Additional annual mortality<1%!

Step 3: What is the effect of the changes in mortality at the population level?

Matrix population model

- Age structure
- Annual survival
- Age of recruitment
- Annual fecundity
- Species specific parameters (Horswill & Robinson 2015)
- Population projection through time

Step 3: Population growth rate

Population growth rate (PGR)

No density dependence (exponential growth/decline)

OWF and population growth rate

In summary

- The bird populations in our study overlap about 1-2% with NL OWFs and 4-7% with international OWFs.
- Individual based model predicts declines in survival <1%</p>
- We found only a small effect of OWFs on the population level of the seabirds

Disclaimers

Effects of even larger OWF areas are not clear

Other seabird species may show different patterns

Data availability international areas bird counts is very limited.

Habituation of birds may lead to shift from habitat loss to collision victim

References

Dierschke V, Furness RW, Garthe S (2016) Seabirds and offshore wind farms in European waters: Avoidance and attraction. Biol Conserv 202:59–68.

Horswill, C., & Robinson, R. A. (2015). Review of Seabird Demographic Rates and Density Dependence. JNCC Report 552. Peterborough, UK.

Figure 2.1. Overview of observer effort per year for the two data sources.

Worst 5% of additional annual mortality IBM is comparable to mortality 10% rule

