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Abstract 

In this report we present the results of a statistical analysis applied on 
data on Common Guillemots (Uria aalge) from various European offshore 
wind farms.  

Results for the Princess Amalia Wind Farm (PAWP) show that there 
are clear spatial patterns in the distribution of birds. However, these spatial 
patterns differ per survey and there is no consistent pattern in these spatial 
distributions. We were not able to detect a significant effect of the wind 
farm on these spatial distributions. Results for the Windpark Egmond aan 
Zee (OWEZ) are similar. Results for Robin Rigg showed that spatial 
patterns also differ per survey. However, there seems to be a (weak) wind 
farm avoidance effect in the spatial patterns for Robin Rigg. 

The analysis of PAWP, OWEZ and Robin Rigg data indicate that 
spatial patterns in abundances differ per survey. The data from the Alpha 
Ventus, Blighbank en Thorntonbank, Horns Rev and Sheringham Shoal 
Offshore wind farms do not allow for the analysis of individual surveys 
due to the large number of zeros for Guillemots. Analysis of combined 
surveys may be misleading. 

Given the fact that for three wind parks, spatial patterns differ per 
survey, and for all other wind farms considered in this report we cannot 
analyse data per survey, it may be an option to focus future research on a 
different species, or base the analyses on multiple species simultaneously. 
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1 Introduction 
Many countries around the North Sea are building offshore wind parks 

to harvest wind energy to create energy. For example, Denmark is aiming 
to produce 50% of its required energy consumption via wind energy by 
2020. Building large wind parks in the sea may affect sea life in, and 
around the parks.  

In this report we analyse whether wind parks have any effect on the 
spatial distribution of Common Guillemots (Uria aalge). Data on sea birds 
are typically observed from a boat that navigates in transects around a 
wind farm. The resulting data sets typically contain many zeros, spatial 
correlation, temporal correlation and non-linear patterns. As a result the 
statistical analysis of such a data set is a major challenge and requires 
advanced statistical methods. 

The original plan was to analyse data from at least 5 wind parks, but 
due to some wind farms having mainly zero observations for Guillemots, 
we ended up with the analysis of data from only 3 wind parks, namely 
Princess Amalia Wind Farm (PAWP) and Windpark Egmond aan Zee 
(OWEZ) in Dutch waters and the Robin Rigg wind park in the UK. 
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2 Data exploration for two wind farms; PAWP and OWEZ 
In this section a short data exploration is applied on the PAWP and 

OWEZ data following the protocols described in Zuur et al. (2010; 
2016a).  

2.1 Spatial locations 
The offshore PAWP an OWEZ wind farms are located in Dutch coastal 

waters and Figure 1 shows the spatial position of the sampling locations 
around these wind farms. Although the first impression is that we have a 
lot of observations quite close to each other, these data are actually from 9 
years; see Figure 2. The later graph shows that during the summer months 
hardly any guillemots were sampled.  

For the statistical analyses of these data we can employ different 
strategies. First of all, we have to decide whether we want to analyse the 
combined data from both wind farms, or whether we should split up the 
data and analyse the data of each wind farm separately. Furthermore, in 
both approaches we have the option to analyse the data from all surveys, 
or analyse the data from each survey separately.  

 

  
Figure 1. Spatial position of sampling locations for the offshore 
PAWP and OWEZ wind farms. 
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Figure 2. Spatial position of sampling locations by year and month for 
PAWP and OWEZ. A green dot means that zero birds were observed 
whereas a red dot indicates that the count was larger than 0. 
 

As to the first issue, the wind farms were built at different times, hence 
the potential disturbance effect of the PAWP and OWEZ wind farms may 
be different over time. On the other hand, once both wind farms were 
operational it is plausible that they had a combined (disturbance) effect on 
bird distributions. The problem with splitting up the data per wind farm is 
to decide which data actually belongs to a particular wind farm. 

We will initially analyse the data from all surveys. However, results of 
analyses presented in Section 4 show that spatial distributions differ 
considerably per survey, and we will therefore end up analysing the data 
per survey in later sections. Another motivation for analysing the data per 
survey is that the sampling design of at least one other wind farm has 
changed over time (i.e. for the Blighbank and Thorntonbank study areas 
sampling changed from 10 minute resolution to 2 minute resolution). 
Analysing data by survey, and comparing summary statistics per survey 
minimizes (though not eliminates) the effect of changes in sampling 
design. A major advantage of analysing the data for each survey separately 
is that it will be easier to observe small-scale differences and computing 
time will also be shorter.  
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2.2 Zero inflation for PAWP and OWEZ 
The third issue we need to address is which surveys we can include in 

the analyses as some surveys consist for 100% of zeros. The numerical 
information below shows the number of observations and percentage of 
zeros for each survey for the combined PAWP and OWEZ data. The first 
column shows the year (first 4 digits) and month (last 2 digits).   
 
                 N %zeros 
200209         464  100.0 
200210         247   83.0 
200304         503   93.6 
200306         461  100.0 
200308         472  100.0 
200311         338   53.3 
200402         393   70.7 
200704         455   97.4 
200706         445  100.0 
200708         554   99.3 
200709         301   63.8 
200711         393   38.9 
200801         295   49.8 
200804         449   98.0 
200806         510  100.0 
200808         475   98.7 
200811         411   86.9 
200901         284   29.2 
200904         316  100.0 
200906         430  100.0 
200910         415   90.4 
200911         404   62.6 
201001         403   72.0 
201002         382   89.8 
201110         302   61.3 
201111         411   24.6 
201201         300   28.0 
201202         335   62.1 
201204         332   89.5 
201206         333  100.0 
 

We decided to omit the surveys with more than 75% of zeros from the 
analyses. 

3 Statistical models 
3.1 Models for a single survey 

To introduce the statistical models that will be employed in this report, 
we first focus on the data from one survey. We arbitrarily selected the 
survey from November 2003. During this survey 349 observations were 
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made (around the OWEZ and PAWP wind farms) and 54% of the 
observations were equal to 0. Figure 3 shows the sampling locations for 
this survey. We also plotted the area covered by the two wind parks (the 
red polygon is PAWP and the green polygon is OWEZ). 

  
Figure 3. Sampling locations for the survey made in November 2003. 
The area covered by the PAWP wind park is plotted as a red polygon 
and the green area is the OWEZ wind park. 

 
The observed data consists of counts of guillemots. We use the 

following Poisson generalized linear model (GLM; Zuur et al. 2013) as 
starting point of the analysis of data from one survey: 
 

Birdsi ~Poisson µi( )
E Birdsi( )= var Birdsi( )= µi
log µi( )= β1 + β2 ×LogAreai +Other	Covariatesi

 (3.1) 

  
This model states that we assume that the number of observed 

guillemots at site i is Poisson distributed with mean µi, and µi is modelled 
as an exponential function of covariates.  

The sampling effort differs per site and this is quantified with the 
variable ‘Area’. One option is to use the natural log of Area as an offset 
(Zuur et al. 2013). This means that the model can be written as µi = Areai 
× exp(Intercept + Covariatesi) due to properties of exponential and 
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logarithmic functions. However, such an approach assumes that if we 
double the sampling effort, then we also double the expected number of 
birds and this may not apply for these data. We therefore decided to use 
the natural log of sampling effort simply as a covariate; see Equation (3.1).  

As to the ‘Covariates’ component, for the moment we will drop it. In 
the next subsection, we will formulate models for the analysis of data from 
multiple surveys. Then we will consider terms like ‘construction period’ 
and ‘survey’ (as a random effect) for the ‘Covariates’ component.  

Results of analyses applied on the November 2003 survey indicate that 
the Poisson GLM is overdispersed (see Section 5) due to spatial 
correlation and zero-inflation. In a Poisson GLM the mean is equal to the 
variance; see Equation (3.1). Quite often this relationship does not hold for 
ecological data. If the variance is larger than the mean then we have 
overdispersion. Possible causes for overdispersion are violation of the 
independence assumption (e.g. spatial correlation) or zero-inflation.   

We therefore consider three more models for the survey data from 
November 2003, namely the Poisson GLM with spatial correlation in 
Equation (3.2), the zero-inflated Poisson GLM in Equation (3.3) and the 
zero-inflated Poisson GLM with spatial correlation GLM in Equation 
(3.4).  
 

		

Birdsi ~Poisson µi( )
E Birdsi( ) = var Birdsi( ) = µi
log µi( ) = β1 +β2 ×LogAreai + vi

 (3.2) 

  
The crucial difference between models (3.1) and (3.2) is that in the later 

one we are using a random effect vi. Instead of assuming that this random 
effect is independently and normally distributed, as is usual in mixed 
effects modelling (Pinheiro and Bates, 2000), we will assume that these 
are spatially correlated. This is achieved via the covariance matrix of the 
random effects vis (Rue et al. 2009).  

In Equation (3.3) the zero-inflated Poisson (ZIP) model is presented. In 
this model, an extra term π is used to model the excessive number of 
zeros; see Zuur et al. (2009, 2012, 2016b) for details. 
 

Birdsi ~ ZIP µi ,π( )
E Birdsi( )= 1−π( )× µi
log µi( )= β1 + β2 ×LogAreai

 (3.3) 

 
Finally, the ZIP model with spatial correlation is presented in Equation 

(3.4). This model allows for excessive number of zeros and spatial 
correlation. This is a rather advanced model. The potential problem with 
this model is that sites with zero abundance may be geographically close 
to each other. If that is the case then the zero-inflation parameter π and the 
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spatial term may potentially fight for the same information, and that may 
cause numerical estimation problems when fitting this model. 
 

Birdsi ~ ZIP µi ,π( )
E Birdsi( )= 1−π( )× µi
log µi( )= β1 + β2 ×LogAreai + vi

 (3.4) 

 
Estimation of all models is done with the package R-INLA (Rue et al. 

2009), which is executed from within the statistical software package R (R 
Core Team, 2018). The technical background of INLA is quite 
complicated and is not discussed here. See Zuur et al. (2017) for a non-
technical explanation.  

3.2 Technical information 
Before we continue we provide a little bit more technical information 

on the procedures used by R-INLA. The spatial models in Equations (3.2) 
and (3.4) contain a spatial correlated random effect. However, R-INLA 
does not estimate the vis and its covariance matrix directly. Instead, it puts 
a fine grid on top of the sampling locations; see Figure 4. This grid is 
called a mesh. The mesh contains a large number of nodes. At each of 
these nodes R-INLA will estimate a wj value. The mesh in Figure 4 has 
3715 nodes, and therefore we have 3715 of these wjs values. Once R-
INLA has estimated all the wj values (and the corresponding covariance 
matrix), it can easily calculate the spatial correlated random effects ui. The 
wjs are also spatially correlated and a special correlation function is used 
to model its covariance matrix. 

Technically, the Matérn correlation function is used in combination 
with the SPDE approach, which stands for continuous domain stochastic 
partial differential equations. Full details can be found in Blangiardo and  
Cameletti (2015). 
 
 

 

Main point summary: Instead of estimating the correlation 
between the spatial random effects ui directly, INLA works at 
a deeper level, namely with a large number of wj values 
defined on a fine grid (called: mesh).  
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Figure 4. The mesh used by the spatial ZIP model. The mesh has 3715 
vertices. The mesh has an inner part (fine mesh) and also an outer 
part to avoid numerical problems due to the boundary. 

3.3 Models for multiple surveys 
Before applying models (3.1) to (3.4) on the November 2003 survey 

data we will analyse the data of all surveys from both wind farms. Three 
models were applied; a model with no spatial correlation, a model in 
which there is only spatial correlation, and a model with spatial-temporal 
correlation. And we used the Poisson, zero-inflation and negative binomial 
versions of these models. The motivation for using the negative binomial 
(NB) distribution is this distribution is also capable of dealing with 
excessive number of zeros. Hence, in fact we applied 9 models.  Results 
are presented in Section 4. 

The model with the spatial-temporal correlation is using the so-called 
‘replicate’ correlation. In this correlation structure all surveys share the 
same correlation parameters, but the spatial random fields can change 
from survey to survey.  
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Main point summary: Three types of models are applied on 
the bird data from all surveys of the PAWP and OWEZ wind 
farms; a model without spatial correlation, a model with 
spatial correlation, and a model with spatial-temporal 
correlation. And we combined these models with the Poisson, 
zero-inflation and negative binomial distributions.  

4 Results for all surveys and both wind parks 
When comparing models in R-INLA we can use the DIC and/or WAIC. 

The use of these statistics is similar to the use of the AIC in frequentist 
analysis; the lower the DIC (or WAIC) the better the model. 

Below, the DIC and WAIC values of the models without spatial 
correlation (using a Poisson, ZIP and NB distribution), with spatial 
correlation, and with spatial-temporal correlation are presented. 
 
                                 dic      waic 
Poisson GLM                 20704.36  20764.92 
ZIP GLM                     17370.20  17420.35 
NB GLM                      13945.30  13948.36 
Poisson GLM + SRF           16395.43  18212.21 
ZIP GLM  + SRF              14856.01  15840.24 
NB GLM  + SRF               13766.82  13776.66 
Poisson GLM + replicate SRF 11900.04  12028.75 
ZIP GLM  + replicate SRF    12282.33  12603.47 
NB GLM + replicate SRF      12807.43  12796.74 
 

The DIC and WAIC values of all models with spatial-temporal 
correlation are lower. In the replicate correlation model, each survey is 
allowed to have a different spatial pattern, although all spatial patterns 
share the same statistical parameters that define the spatial correlation.  
Figure 5 shows the spatial random fields for each selected survey. 
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Figure 5. Spatial random fields obtained by the Poisson GLM with 
spatial-temporal correlation applied on the combined data of the 
OWEZ and PAWP wind parks. Red values correspond to areas with 
higher abundances and blue values to areas with lower abundances. 

 
Note that the spatial patterns differ considerably from survey to survey. 

Because of this we decided to analyse the data from each survey 
separately. The advantage of doing this is that it will give us more detailed 
information, and we can more easily obtain summary statistics. 
Additionally, although the DIC and WAIC values indicate that the Poisson 
distribution is the best model, it may well be that for individual surveys a 
zero-inflated distribution is better.  
 
 

 

Main point summary: DIC and WAIC values indicate that 
the spatial correlation differs per survey. The spatial random 
fields in Figure 5 indicate that the spatial patterns of birds 
differ per survey.  
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5 Results for one survey (November 2003) 
In the previous section we showed that the spatial distribution of each 

survey is rather different. This means that the spatial distribution of the 
guillemots differs per survey, and it also justifies analysing the data from 
each individual survey. Before we present the results of all surveys, we 
will present the full results of the analysis of one survey, namely that of 
the November 2003 survey. The reason for doing this is to give an idea 
which steps we carried out for each survey, but are not shown here. 

5.1 Poisson GLM  
We started the statistical analysis by applying the Poisson GLM in 

Equation (3.1) on the November 2003 data using R-INLA. After fitting 
any statistical model, one has to apply model validation. In such a step we 
plot residuals versus fitted values, plot residuals versus each covariate in 
the model and each covariate not in the model, and we also need to assess 
the residuals for spatial dependency.  

Another model validation step is to simulate 1,000 data sets from the 
model. The simulated 1,000 data sets from the model should be similar to 
the observed data. But if the simulated data sets contain fewer numbers of 
zeros than the observed data set, then we know that the model cannot cope 
with the excessive number of zeros. 

Figure 6 shows a variogram of the Pearson residuals obtained from the 
Poisson GLM. A horizontal band of points would indicate spatial 
independency but in this case there is clear violation of independence. 
Figure 7 summarises the simulation study. We simulated 1,000 data sets 
from the model, and for each simulated data set we calculate the number 
of zeros. These are plotted as a frequency plot. The red dot represents the 
number of zeros in the November 2003 survey. If the model would be able 
to cope with the excessive number of zeros then the red dot would lie 
within the black bars of the frequency plot. Clearly, that is not the case 
here. Hence, the Poisson GLM cannot cope with the excessive number of 
zeros. On itself this is not surprising as the model only contains LogAreai 
as a covariate. 
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Figure 6. Variogram of Pearson residuals obtained by the Poisson 
GLM in Equation (3.1). 

 

 
 
Figure 7. Results of simulation study. The red dot represents the 
number of zeros in the observed data in survey from November 2003. 
The frequency plot (black lines) are based on the number of zeros in 
1,000 simulated data sets.  
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We then applied the other three models that were discussed in the 
previous section. The tools used in R-INLA are based on Bayesian 
statistics and comparing models in a Bayesian context can be done by 
comparing DICs or WAICs. The DICs and WAICs values for all four 
models are as follows.  
 
                        dic     waic 
Poisson GLM         2261.25  2279.00 
Spatial Poisson GLM 1049.27  1195.36 
ZIP GLM             1649.90  1664.50 
Spatial ZIP GLM      986.67    993.71 
 

The lower these statistics, the better is the model. The results indicate 
that the spatial ZIP model is best model, followed by the spatial Poisson 
GLM. We will apply the spatial ZIP model in the next subsection. 
 
 

 

Main point summary: Model validation of the Poisson GLM 
applied on the November 2003 data indicated that Pearson 
residuals are spatially correlated and the model cannot cope 
with the excessive number of zeros. Results of all models 
indicate that the spatial ZIP model is the best, as judged by 
DIC and WAIC values. 

5.2 Poisson GLM with spatial correlation and zero-inflation 

5.2.1 Interpretation of the spatial random field (wjs) 

In Section 3.2 we gave a rather short explanation about the spatial 
random field. Recall that we use a mesh on which a large number of wj 
values are estimated. Once R-INLA has estimated all the 3715 wj values, 
we can use special functions in R to plot them; see Figure 8. We will now 
explain how to read this graph. The fitted values of the ZIP model with 
spatial correlation are calculated as  
 

(1 - π)  × exp(Intercept + LogArea effect + Spatial correlation) 
 

This is based on the expression for the mean in Equation (3.4). Due to 
the properties of the exponential function, this can also be written as 
 

(1 - π)  × exp(Intercept + LogArea effect) × exp(Spatial correlation) 
 

The posterior means of the intercept and slope for LogArea are as 
follows. 
 
            mean     sd  0.025quant  0.975quant    
Intercept 1.8717 0.2376      1.4051      2.3379 
LogArea   0.3011 0.1843     -0.0607      0.6626  
 

The posterior mean of π = 0.18. This means that the fitted values can be 
written as  
 

0.82  × exp(1.87 + 0.30 × LogAreai) × exp(Spatial correlation) 
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The ‘Spatial correlation’ term represents the uis in Equation (3.4). R-
INLA replaces these by A × w, where the vector w contains all the wj 
values and A is a matrix consisting of zeros and ones. Figure 8 is a visual 
representation of all the wj values. Wherever the wjs are zero (i.e. green 
areas), we have exp(0) = 1, and there is no spatial effect. And if wj = 3 (red 
areas) we need to multiply the other components in the model with    
exp(3) ≈ 20. Finally, if wj = -3 (dark blue areas) we need to multiply the 
other components in the model with exp(-3) ≈ 0.05. In other words, the 
spatial random field (i.e. all the wjs) in Figure 8 shows where we have high 
abundances (the red areas) and where we have low abundances (the blue 
areas).  

The standard deviation of the spatial random field (not shown here) is 
about 0.5, which means that any wj value in Figure 8 that is larger than    
1-ish and smaller than -1-ish are important. 

A standard INLA analysis would stop at this point and the focus of the 
discussion would be what the spatial random field represents (e.g. real 
dependency or missing covariates). 

 

 
Figure 8. Spatial random field obtained by the spatial ZIP model 
applied on the survey data from November 2003. The coordinates are 
UTM coordinates. 
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5.2.2 Converting the spatial random field into avoidance and 
preference 

The main motivation for conducting the statistical analysis in this report 
is to assess whether there are any spatial disturbances due to the wind 
farms. In order to quantify ‘spatial disturbance’ we somehow need to 
convert the colours in Figure 8 into numbers versus distance. Actually, it 
is not the colours (as these are just a visual presentation) but the wj values 
underlying the colours.  

One possible strategy is to draw circles with different discrete radiuses 
around the center of a wind farm (see Figure 9 for PAWP) and determine 
the percentage of wj values that are negative as this means ‘avoidance’. 
And it is also interesting to calculate the percentage of red values and 
compare this to distance to the wind farm. Unfortunately, determining 
these percentages is not a trivial exercise and we will discuss how to do 
this in the next section. 

The only problem with this specific survey is that it is a so-called T0 
survey. That means that the survey was taken before construction of the 
wind farm; hence there is not supposed to be any disturbances yet. 
However, we can consider the centre of the ‘wind farm to be’ as a 
reference point and quantify how much/far the red areas and blue areas are 
away from this reference point. Ultimately, we want to repeat this exercise 
for every survey and look at changes over time in these ‘distance’ patterns 
for T0, T1 (during construction) and T2 (post-construction) surveys. 

  
Figure 9. Spatial random field obtained by the spatial ZIP model. 
Circles with a radius of 5 km, 10 km, 15 km, etc. around the centre of 
PAWP have been added. 

5.3 Excursion sets for PAWP 

In this section we discuss how to determine the percentage of wj values 
in each distance band that are negative, and also the percentage that is 
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positive. Figure 10 shows the same picture as in Figure 9, except that we 
have added the spatial positions of the wj values as small yellow dots. 
 

  
Figure 10. As Figure 9. The position of the wjs have been added as 
small yellow dots. 

 
For each wj we also get its posterior standard deviation and using this 

we can determine whether a wj is important. Wang et al. (2017) and Bolin 
and Lindgren (2015) explain how to do this. A brief outline of this process 
is given next.  

The spatial random field can a be written as f(x), where x are the 
sampling locations. The challenge is now to find all the x values (or: all 
the locations) in the study area for which f(x) > u with a given probability 
1 - α. For example, we may be interested to know all the locations for 
which f(x) > 0 with probability 0.9. These are all the points were we have 
above average counts due to spatial patterns. 

In a frequentist analysis this would be formulated as which of the wjs in 
Figure 9 are significantly different from 0 (and positive). But with 3715 
wjs, we would need to do a correction for multiple testing, for example a 
Bonferroni correction.  

In Bayesian analysis this works slightly different, see Bolin and 
Lindgren (2015) for details. First we calculate the marginal probability 
that a wj is larger than 0. The phrase ‘marginal’ means that we are ignoring 
the multiple testing problem. We just close our eyes and repeat this 
process 3715 times. The locations were a wj is positive and important are 
plotted as slightly larger yellow dots (within the red areas) in Figure 11.  
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Figure 11. As Figure 9. Yellow dots within the red areas refer to 
locations where the wj is positive and important.  
 

  
Figure 12. As Figure 9. Black dots refer to the exclusion set for the 
positive values. At these locations the joint probability that the wj 
values are positive and important is at least 0.90. 

 
To deal with the Bayesian equivalent of multiple testing, Bolin and 

Lindgren (2015) introduce an exclusion set. These are the locations where 
the joint probability that the wj values at all these locations is larger than 0 
is at least 0.9. The locations for which the joint probability is positive and 
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larger than 0 are plotted as black dots (within the read areas) in Figure 12. 
We can consider these areas as ‘preference areas’. Instead of looking at 
positive values of the wjs, we can also look at negative values. This would 
identify locations with lower abundances of guillemots; call it ‘avoidance 
areas’. 

 

  
Figure 13. As Figure 9 to Figure 12. The yellow dots within the blue 
areas refer to points were we have an important reduction of the 
spatial random field. The black dots within the blue areas form the 
exclusion set for the negative values.  

 
Now that we know at which sampling areas of the spatial random field 

we have important and positive values, and important negative values, we 
proceed to the next stage and calculate the percentages of such points for 
each distance band around the reference point (the center of the ‘to be 
build wind farm’); see Figure 14. We simply calculated the number of 
nodes (or: wjs) that are important within a distance band and divided this 
by the total number of nodes within a distance band (while taking into 
account the boundary of the study area). The left panel shows the 
percentage of important nodes (or: wjs) for the negative values (blue areas 
in Figure 9) in each distance band, and the right panel shows the 
percentage of important nodes that are positive within each distance band.  

These graphs give the same information as Figure 8, namely we have 
above average values close (i.e. 0 – 5 km and 5 – 10 km) to the reference 
point. And the further away from the reference point (15 – 20 km and 20 – 
25 km) the lower the abundances.  
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Figure 14. Percentages of important nodes in each distance band for 
PAWP. The black lines are for the marginal probabilities and the red 
lines are for the joint probabilities. The left panel is for the negative 
values (blue areas in Figure 9) and the right panel is for the positive 
values (red areas in Figure 9). 

 
We will repeat the whole excursion set analysis for OWEZ, and 

potentially we can also combine the results and calculate the percentage of 
important nodes for the distance bands of both wind farms (i.e. calculate 
the percentage of important nodes in both the 0 – 5 km intervals). We will 
not do the last part as the two wind parks were built at different times. 

6 Results for each individual survey 
We repeated the analysis described in Section 5 for all surveys and 

results are presented in Figure 15 to Figure 26. Red values correspond to 
above average values and blue values to below average values. Small 
circles correspond to important marginal probabilities and the black open 
circles to important joint probabilities. And in Figure 27 all these 12 
graphs are presented in one figure. It seems that the spatial random field 
changes considerably from survey to survey. We also observed this in the 
analysis of the combined data. 
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Figure 15. Results for the November 2003 survey. 

 

 
Figure 16. Results for the February 2004 survey. 
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Figure 17. Results for the September 2007 survey. 

 
 

 
Figure 18. Results for the November 2011 survey. 
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Figure 19. Results for the January 2008 survey. 

 
 

 
Figure 20. Results for the January 2009 survey. 
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Figure 21. Results for the November 2009 survey. 

 
 

 
Figure 22. Results for the January 2010 survey. 
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Figure 23. Results for the October 2011 survey. 

 
 

 
 

Figure 24. Results for the November 2011 survey. 
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Figure 25. Results for the January 2012 survey. 

 
 

 
Figure 26. Results for the February 2012 survey. 
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Figure 27. Results for all surveys. The colour red corresponds to 
above average values and blue to below average values. 
 

7 Linear mixed effects applied on summary statistics 
In the previous section we presented the spatial random fields obtained 

from the analyses of individual surveys. These spatial fields represent the 
abundances of guillemots. It is quite clear that the spatial patterns differ 
per survey. Instead of visually comparing these spatial random fields, we 
defined distance bands around each wind farm, and we calculated the 
percentage of important wj in each band for each wind farm. We did this 
for marginal probabilities and for joint probabilities. We have plotted 
these in Figure 28 for PAWP and in Figure 29 for OWEZ. 
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Figure 28. Percentage of coverage per distance band for the marginal 
probabilities for PAWP. 
 

 
 

Figure 29. Percentage of coverage per distance band for the marginal 
probabilities for OWEZ. 
 

Figure 28 shows the percentage of coverage for the marginal 
distributions plotted versus distance from the centre of the PAWP wind 
farm. If the PAWP wind farm would have been a disturbance factor for 
guillemots, then all the red lines would be increasing for larger distances 
(the further away from the wind farm, the higher the abundance), and the 
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blue lines would all decrease (the closer to a wind farm to lower the 
abundance). However, this is not the case. To formalise this visual 
observation we applied a linear mixed effect model on these percentages. 
To be more precise we modelled the (marginal) percentages as a function 
of distance. And we used survey as a random effect and we also used 
distance as a random slope. In normal words, such a model investigates 
whether there is a relationship between the (marginal) percentages and 
distance, while allowing for different intercepts and slopes per survey. 

We also applied this model on the joint probabilities, and we carried out 
the analysis for PAWP and for OWEZ. 
 

Percentageij ~N µi ,σ 2( )
E Percentageij( )= µi = Intercept +Distanceij +
																																														Surveyi +Distanceij × Surveyi

 (3.4) 

 
Results for the ‘above average’ data for the marginal probabilities for 

PAWP are as follows. 
 
               Value      SE DF   t-val   p-value 
(Intercept)  0.09980 0.05710 47   1.7477   0.0870 
Distance    -0.00087 0.01558 47  -0.0561   0.9555 
 

This means that in Figure 28, when looking at only the red lines, there 
is no significant distance effect. The same was done for the blue lines, and 
for the joint probabilities. In none of the models we had a significant 
distance effect. 

Exactly the same was done for the OWEZ summary statistics, and again 
there was no significant distance effect in any of the models. 
 
 

 

Main point summary: In this section we analysed the 
percentage of important nodes per distance band. A visual 
inspection and the application of a linear mixed effects model 
indicate that there is no distance effect. This means that we 
did not find a consistent disturbance or preference effect of the 
two wind farms.  
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8 Analysis of Robin Rigg data 
In this chapter we analyse the guillemot data from the Robin Rigg wind 

farm, which is based in the UK. 

8.1 Data exploration for the Robin Rigg data 
The statistical analyses carried out in this supplement are similar to 

those applied on the PAWP and OWEZ data. 

8.1.1 Spatial locations 
Figure 30 shows the sampling locations. One of the main differences 

between this wind farm and the OWEZ/PAWP wind farms is that the 
Robin Rigg wind farm is in an estuary. The study area of this wind farm is 
also smaller than the combined study area of OWEZ and PAWP. 
 

  
Figure 30. Spatial position of sampling locations for the Robin Rigg 
wind farm. 

 
Figure 31 also shows the positions of the sampling locations, but this 

time we superimposed the center of the wind farm as a red dot, and the 
positions of the outer turbines are represented as a red polygon.  

The data used in this supplement are all post-construction, and surveys 
were taken on a monthly basis from March 2010 to February 2013. Figure 
32 shows the sampling locations by month and year. Two differences 
between the Robin Rigg data and the OWEZ/PAWP data sets are that for 
Robin Rigg we have more surveys, and these are also regular spaced in 
time (one every month). This allows for the implementation of an 
additional statistical model. 
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Figure 31. Spatial position of sampling locations for the Robin Rigg 
wind farm. The red lines represents the outer turbines. 
 

  
Figure 32. Spatial position of sampling locations by year and month 
for the Robin Rigg wind farm.  

81.2 Zero inflation 
One thing that the Robin Rigg data set has in common with the PAWP 

and OWEZ data sets is zero inflation. Figure 33 shows the zeros and ones 
per survey. 
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Figure 33. Spatial position of sampling locations by year and month 
for the Robin Rigg wind farm. A green dot means that zero birds were 
observed whereas a red dot indicates that the count was larger than 0. 

 
The numerical information below gives the survey number, number of 

observations per survey and the % of zeros per survey. For the PAWP and 
OWEZ data we dropped all surveys for which we had more than 75% of 
zeros. Here we will keep all the data so that we don’t get problems with 
the regular spaced time series nature of the data. 
 
    Sample size %zeros 
87          260   83.1 
88          302   48.7 
89          226   77.9 
90          268   82.5 
91          276   76.4 
92          306   72.2 
93          183   69.4 
94          118   28.8 
95          260   69.2 
96          258   86.4 
97          268   75.7 
98          302   71.9 
99          287   81.5 
100         314   52.9 
101         305   64.9 
102         297   70.4 
103         274   54.7 
104         308   67.2 
105         302   63.6 
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106         303   64.4 
107         272   69.9 
108         271   89.3 
109         185   84.9 
110         299   95.7 
111         299   66.6 
112         303   67.7 
113         303   69.3 
114         298   80.2 
115         299   73.6 
116         294   58.8 
117         299   71.9 
118         301   60.1 
119         300   67.0 
120         307   84.0 
121         296   90.9 
122         309   87.7 

8.2 Statistical models 
We applied the same models that were applied on the OWEZ and 

PAWP data, namely a Poisson GLMM, a zero-inflation GLMM and a 
negative binomial GLMM. The reason for using the second and third 
models is the presence of the large number of zeros. Each of these models 
was applied with the following dependency structures. 
 

1. A GLMM assuming that there is no spatial correlation. 
2. A GLMM assuming that there is spatial correlation, but this spatial 

correlation does not change over time. 
3. A GLMM assuming that there is spatial correlation that changes 

randomly over time. This was the replicate structure. 
4. A GLMM assuming that there is spatial correlation that changes 

over time following an auto-regressive pattern of order 1 (AR1). 
 

The first three models were discussed in detail for the PAWP and 
OWEZ data. The fourth model, the GLMM with spatial-temporal AR1 
correlation, was not applied on the OWEZ and PAWP data due to the 
irregular temporal nature of those data sets. For the Robin Rigg data, such 
a model can be applied because we have survey data for each month 
between 3 March 2010 and 2 February 2013. The model formulation is as 
follows. 
 

		

Birdsit ~Poisson µit( )
E Birdsit( ) = var Birdsit( ) = µit
log µit( ) = β1 +β2 ×LogAreait + xi + Surveyt
xit =φ × xi ,t−1 + vt
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We assume that the numbers of birds sampled at location i in survey t 
are Poisson distributed with the mean µit. The mean is then modelled as a 
function of an intercept, sampling effort, a survey effect (modelled as a 
random effect), and a spatial-temporal correlated random field. For survey 
t, the spatial random field is xit and is equal to φ times the spatial random 
field from survey t – 1 plus pure spatial noise. A high value of φ (i.e. close 
to 1) means that there is strong temporal correlation. 

In non-technical jargon, the GLMM with an AR1 spatial-temporal 
correlation assumes that there is spatial correlation, and the spatial patterns 
for survey j depend partly on the spatial pattern for survey j – 1. 

The model can easily be extended with a zero-inflated distribution or a 
negative binomial distribution to deal with the excessive number of zeros. 

8.2.2 Technical information 
Figure 34 shows the mesh that was used; it has 2023 vertices. The same 

priors for the hyperparameters were used as for the PAWP and OWEZ 
models. The spatial-temporal models require more computing time than 
for the OWEZ and PAWP data sets. The reason for this is that we have 36 
surveys, and for each of them we need to estimate 2023 w’s for the spatial 
random field.  

Initial attempts to run models with the AR1 spatial-temporal 
dependency structure failed due to the large number of nodes (ws) in the 
mesh. We therefore followed Zuur et al. (2017) who defined knots (time 
points) and defined the AR1 correlation structure on these knots. We used 
time knots separated by 4 surveys. In normal words this means that we 
have a spatial random field for every fourth defined time point (knot), and 
the (time-) distances between survey and knot are used as weighting 
factors to calculate the fitted values for each survey. 
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Figure 34. The mesh used by the spatial ZIP model. The mesh has 
2023 vertices. The mesh has an inner part (with a finer resolution) 
and also an outer part to avoid numerical problems due to the 
boundary. 

8.4 Results for all surveys  
The DIC and WAIC values of the models without spatial correlation 

(using a Poisson, ZIP and NB distribution), with spatial correlation, with 
spatial-temporal correlation using the replicate option, and the spatial-
temporal AR-1 correlation structures are presented below. 
 
                                  DIC     WAIC 
Poisson GLMM + no correl.    38848.00 39071.26 
ZIP GLMM  + no correlation   28392.35 28570.28 
NB GLMM  + no correlation    22008.70 22019.16 
 
Poisson GLMM + SRF           30240.28 32168.53 
ZIP GLMM + SRF               24598.46 25938.54 
NB GLMM + SRF                20661.66 20686.35 
 
Poisson GLMM + Replicate SRF 20459.53 22780.97 
ZIP GLMM + Replicate SRF     19646.35 20073.20 
NB GLMM + Replicate SRF      19413.98 19337.86  
 
Poisson GLMM + AR1 SRF       23472.25 30716.84 
ZIP GLMM + AR1 SRF           20807.90 21620.99 
NB GLMM + AR1 SRF            20277.94 20308.53 
 

The best model, as judged by DIC and WAIC values, is the NB GLMM 
with the replicate spatial-temporal correlation. And the second best model 
is the ZIP GLMM with the replicate spatial-temporal correlation.  

Recall that in the replicate correlation model, each survey is allowed to 
have a different spatial pattern, although all spatial patterns share the same 
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statistical parameters that define the spatial correlation. We did try to 
increase the time resolution for the AR1 models (by not using knots), but 
the models did not converge. 

In the remaining part of this section we will present the results of the 
NB GLMM with replicate spatial-temporal correlation, though we could 
also have presented the ZIP GLMM with replicate spatial-correlation. 

 Figure 35 shows the spatial random fields for each survey obtained by 
the NB GLMM with replicate spatial-temporal correlation. 
 

  
Figure 35. Spatial random fields obtained by the NB GLMM with 
spatial-temporal replicate correlation applied on Robin Rigg data. 
Red values correspond to areas with higher abundances and blue 
values to areas with lower abundances. To obtain the fitted values of 
the model we have to (i) add the intercept, sampling area effect, 
random effect survey and the spatial random fields, and then (ii) the 
exponential function has to be applied. This model does not use time 
knots. 
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Note that in some time periods the spatial patterns look similar, whereas 
in other time periods the spatial patterns look considerably different from 
survey to survey. This is exactly what the replicate correlation allows for. 
With the AR1 correlation (and a large φ), each survey would have been 
similar to the previous one. But that is clearly not the case here.   

Because we have spatial-temporal correlation that changes by survey 
we decided to analyse the data from each survey separately in the next 
section; just as we did for the OWEZ and PAWP data sets.  

Model validation was applied on the modelling results of the NB 
GLMM with the spatial-temporal replicate correlation. Simulation results 
showed that this model can cope with the large number of zeros. The 
Pearson residuals still contain a small amount of spatial correlation. 
 
 

 

Main point summary: DIC and WAIC values indicate that 
the spatial correlation differs randomly per survey for the 
Robin Rigg data. This does not mean that there is no wind 
farm effect. The results merely state that there are spatial 
patterns in Guillemots abundances, and these change 
randomly from survey to survey.  

8.5 Results for each individual survey 
Just as for the OWEZ and PAWP data, we continued the analysis by 

applying a model with spatial correlation on data of each individual 
survey. We have 36 surveys for this data set, and that means that we 
applied 36 times a model with spatial correlation. We will not present all 
the 36 spatial random fields here (they look rather similar to those 
presented in Figure 35).  

Recall from the OWEZ and PAWP analyses that R-INLA will estimate 
a w value on each node of the mesh in Figure 34. We will get 2,023 of 
those. Some will be positive and others will be negative. Positive values 
correspond to above average values of the spatial random field and 
therefore above average fitted guillemot values. To determine whether 
there is a wind farm effect we drew multiple circles with different radiuses 
around the center of the wind farm and counted the number of important 
(as in: ‘significant’) ws in each distance band. And we converted this into 
a proportion. We did this for marginal probabilities and for joint 
probabilities (which does a sort of post-hoc correction).  

Although the negative binomial distribution gave the best model when 
we analysed all surveys in the previous section, it may well be that (for 
some) individual surveys the ZIP distribution is better. We therefore ran 
the individual survey analyses with the negative binomial distribution, and 
also with the ZIP distribution, and we will present results of both models. 

The study area for Robin Rigg is smaller than the combined OWEZ and 
PAWP study area. We therefore had to use smaller distance bands around 
the center of the wind farm, namely 0 – 3 km, 3 – 6 km, 6 – 9 km and 9 – 
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12 km. The first distance band (0 – 3 km) covers the entire wind park plus 
a small area beyond the boundary. 

The patterns observed for the marginal and joint probabilities look 
similar, and here we focus on the marginal probabilities. 

We will focus on the positive ws values as these are associated with 
non-zero and non-low counts. Results for the positive w values using the 
ZIP distribution are presented in Figure 36. Recall that positive w values 
correspond to above-average values for birds. Each panel in Figure 36 
shows the percentage of important positive w’s versus the distance bands 
for a specific survey. We have conditioned the graphs on month and year. 
For example, the fourth panel from the left in the top row is for the April 
2010 survey. The line in the graph shows that in the 0 – 3 km band, we 
have 40% of nodes with important (i.e. significant) positive w values. In 
normal words this means that a lot of birds where observed within 3 km of 
the center of the wind farm. Closer inspection of the corresponding 
modelling results show that these birds were actually observed just outside 
the wind farm perimeter, but still within 3 km of the center. A similar 
pattern was observed in August 2011.   
 

 
 

Figure 36. Percentage of coverage of positive (and important) values 
of the spatial random field per distance band for the marginal 
probabilities for Robin Rigg for each month and year. Results are 
obtained with a ZIP GLM with spatial correlation. 
 

The interesting thing in Figure 36 is that for a lot of surveys (e.g. the 
first 7 surveys in 2011) the first distance band has a low percentage of 
positive (and important) w values, and then this percentage increases. In 
normal words this means that within the first 3 km we have low (spatially 
correlated) abundances and the further away we go from the wind farm the 
higher the abundances (and it then seem to reach a plateau or decreases 
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again). It is tempting to associate this pattern with a wind farm disturbance 
effect. 

We then took all 36 curves in Figure 36 and analysed them with a linear 
mixed effects model in which we model the percentage of important and 
positive w values as a function of distance (modelled as a categorical 
covariate) and a random effect survey. Results of this model show that the 
distance effect is significant (X2 = 12.028, df = 3, p = 0.007). 

The estimated parameters of this model are as follows. 
 
                  Value    SE  DF  t-val  p-val 
(Intercept)       0.099 0.020 105  4.892  0.000 
fBandsNew3-6 km   0.039 0.021 105  1.844  0.067 
fBandsNew6-9 km   0.004 0.021 105  0.227  0.820 
fBandsNew9-12 km -0.035 0.021 105 -1.664  0.098 
 

These results indicate that the percentage of important ws in the 0 – 3 
km distance band is 9.9%.  In the 3 – 6 km distance band this is 3.9% 
higher. The corresponding p-value is 0.067, indicating that this is only a 
weak effect. Note that these p-values do not indicate whether the 6 – 9 km 
band is different from the 3 – 6 km band. They only indicate whether each 
band is different from the 0 – 3 km band. Another criticism is that we use 
frequentist tools to analyse a summary statistic obtained with Bayesian 
tools. 

We repeated the analyses with the NB distribution and results broadly 
similar. The percentage of important and positive w values per distance 
band are plotted for each survey in Figure 37. 
 

 
 

Figure 37. Percentage of coverage per distance band for the marginal 
probabilities for Robin Rigg. Results are obtained with a NB GLM 
with spatial correlation. 
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In this case the linear mixed effects model gives X2 = 6.85 (df = 3,        
p = 0.076), indicating again a weak effect of distance. 
 
 

 

Main point summary: In this section we analysed the 
percentage of important and positive ws values of the spatial 
random field per distance band. A visual inspection and the 
application of a linear mixed effects model on summary 
statistics (from 36 surveys) indicate that there is a weak 
distance effect. Higher values of the spatial random field are 
mostly observed further away from the wind farm (i.e. not in 
the 0 – 3 km distance band). However, the observed effects 
have low statistical significance and are obtained via a 
pragmatic statistical analysis. On the other hand, finding a 
pattern in this type of data may be considered as a statistical 
miracle. 
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 Supplement A: Alpha Venus wind farm 
In this supplement we show the problems with the analysis of 

Guillemots abundances for the Alpha Venus wind farm. 

A.1 Number of zeros per survey 
The table below shows the number of observations for Guillemot 

abundances per survey and the percentage of zeros per survey. 
 
   Sample size %zeros 
11         808   82.1 
12         811   99.8 
13         814   99.3 
14         812  100.0 
15         808   98.6 
16         812   93.8 
17         808   99.5 
18         741  100.0 
19         805   98.9 
20         808   99.3 
 

Note that the percentage of zeros for each survey is large. Perhaps the 
first survey can still be analysed but there is no point in analysing 
Guillemot abundances for the other surveys. 

Supplement B: Blighbank wind farm 
In this supplement we show the problems with the data of Guillemots 

abundances for Blighbank wind farm. 

B.1 Number of zeros per survey 
The table below shows the survey number (year and month), sample 

size and percentage of zeros of guillemot abundances per survey. Also 
note that the sampling scheme changed from 10 minutes surveys to 2 
minutes surveys in November 2013. The number of spatial sampling 
locations required for models with spatial correlation is certainly larger 
than the 30-ish that are available for the 2010 – 2013 data. 
 
       Sample size %zeros 
201010          29   93.1 
201011          16   87.5 
201012          33   60.6 
20111           39   51.3 
201110          31   74.2 
201111          33   48.5 
201112          31   41.9 
20112           30   40.0 
20113           33   75.8 
20114           31  100.0 
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20115           30   96.7 
20116           30  100.0 
20117           29  100.0 
20118           28  100.0 
20119           42  100.0 
20121           65   21.5 
201210          36   80.6 
201211          17   52.9 
201212          36   47.2 
20122           39   20.5 
20123           43   60.5 
20124           37   89.2 
20125           37   97.3 
20126           20  100.0 
20127            3  100.0 
20129           35  100.0 
20131            4  100.0 
201311         131   91.6 
201312         222   72.5 
20132          154   92.9 
20133          215   83.7 
20134          127   96.1 
20135          210   99.5 
20137          191  100.0 
20138          143  100.0 
20139            3   66.7 
20141          147   84.4 
201410         139   99.3 
201411         184   96.7 
201412          28   67.9 
20142            5   80.0 
20143            4  100.0 
20144          176   98.9 
20146            3  100.0 
20147           12  100.0 
20148            4  100.0 
20149          150   98.0 
20151            2  100.0 
201512           4  100.0 
20152          181   94.5 
20154          152  100.0 
20159            3  100.0 
20161            4   75.0 
201612           3  100.0 
20162            3  100.0 
20163            2   50.0 
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Surveys with more than 100-ish observations can potentially be used 
for an R-INLA analysis.  But only the December survey from 2013 has 
enough non-zeros. This means that potentially only data from 1 survey can 
be analysed. 

Supplement C: Thorntonbank wind farm 
In this supplement we show the problems with the data of Guillemots 

abundances for Thorntonbank wind farm. 

C.1 Number of zeros per survey 
The table below shows the survey number, number of observations and 

percentages of zero abundances. 
 
       Sample size %zeros 
201210          43   65.1 
201211          42   52.4 
201212           8   75.0 
20131          117   86.3 
201311          26   96.2 
201312         181   67.4 
20132          200   88.5 
20133          139   90.6 
20134          156   99.4 
20135          165  100.0 
20136            8  100.0 
20137          179  100.0 
20138          156  100.0 
20139          176   97.7 
20141           26   73.1 
201410         164   99.4 
201411         186   98.9 
201412         133   88.0 
20142          178   53.9 
20143          178   87.6 
20144          195   98.5 
20146          120  100.0 
20147           13  100.0 
20148          135  100.0 
20149          169  100.0 
20151          152   90.1 
201512         135   95.6 
20152            1  100.0 
20154          199  100.0 
20155           42  100.0 
20157           51  100.0 
20158          165  100.0 
20159          171  100.0 
20161          185   56.8 
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201610           1  100.0 
201612         181   93.4 
20162          181   68.0 
20163          190   88.9 
20164           41  100.0 
20166           42  100.0 
20167           38  100.0 
20168           37  100.0 
20169          148  100.0 
 

There are potentially 2 or 3 surveys that could be used for a spatial 
analysis. 

 


